WETLAND AND OTHER WATERS DELINEATION REPORT

Prepared for:

Mr. Ken Pagano The Sagamore Companies 1333 Twinsburg Road Macedonia, Ohio 44056

For the:

Avon Commerce Parkway Site Approximately 28 acres City of Avon, Lorain County, Ohio

Prepared by:

5070 Stow Rd. Stow, OH 44224 800-940-4025 www.EnviroScienceInc.com

ES Project # 9819

June 12, 2017

STATEMENT OF CERTIFICATION

The analyses, opinions and conclusions in this report are based entirely on EnviroScience's unbiased, professional judgment. EnviroScience's compensation is not in any way contingent on any action or event resulting from this study. Neither EnviroScience nor any EnviroScience employee has any vested interest in the property examined in this study.

TABLE OF CONTENTS

LIST	OF TAE	BLES	iv			
LIST	OF APF	PENDICES	iv			
EXEC	UTIVE	SUMMARY	1			
1.0	INTRODUCTION AND SITE DESCRIPTION					
2.0	METH	ODS	2			
	2.1	Wetlands	3			
		2.1.1 Determination	3			
		2.1.1.1 Vegetation	4			
		2.1.1.2 Hydrology	5			
		2.1.1.3 Soils	6			
		2.1.2 ORAM Categorization	6			
		2.1.3 Cowardin Wetland Classification	7			
	2.2	Other Waters	8			
		2.2.1 Ponds and Lakes	8			
		2.2.2 Streams and Rivers	8			
		2.2.3 HHEI and QHEI	9			
3.0	LITER	ATURE REVIEW 1	0			
	3.1	USGS Topographic Map1	0			
	3.2	NWI Map 1	0			
	3.3	County Soil Survey 1	0			
	3.4	Aerial Photography1	1			
	3.5	FEMA Flood Insurance Rate Map1	1			
	3.6	Ohio Natural Heritage Database 1	1			
	3.7	U.S. Fish and Wildlife Service1	1			
4.0	RESU	LTS1	2			
	4.1	Nonwetlands 1	3			
	4.2	Wetlands1	3			
	4.3	Streams and Rivers1	5			
	4.4	Ponds and Lakes 1	5			
5.0	REGU	LATORY JURISDICTION 1	5			
6.0	ASSU	MPTIONS AND DISCLAIMERS 1	6			
REFE	RENCE	ES1	8			

LIST OF TABLES

LIST OF APPENDICES	.iv
Table 1. Wetland Communities (Cowardin et al. 1979).	. 3
Table 2. Disturbed and Successional Nonwetland Communities.	. 4
Table 3. Vegetative Strata	. 4
Table 4. Plant Indicators	. 5
Table 5. ORAM Scores and Categories.	. 7
Table 6. Soil Types Mapped in Summit County	10
Table 7. Sample Plot Results	12
Table 8. Wetland Results within the Project Area	13
Table 9. Ponds, Lakes, and Other Open Water Features within the Project Area	15

LIST OF APPENDICES

Appendix A: Figures

- Figure 1. Location of Site on Highway Map of Lorain County, Ohio.
- Figure 2. USGS 7.5-minute Map of the Avon Quadrangle.
- Figure 3. NWI Map of Site (Avon Quadrangle).
- Figure 4. Soil Map of Site in Lorain County, Ohio.
- Figure 5. Site Map of Wetlands and Other Water Resources.
- Figure 6. FEMA Flood Insurance Map.
- Appendix B: Site Photographs
- Appendix C: Routine Wetland Determination Data Forms

Appendix D: Ohio Rapid Assessment Method for Wetlands v 5.0 Rating Forms

Appendix E: Ohio Natural Heritage Database Results

EXECUTIVE SUMMARY

EnviroScience, Inc. performed a delineation of wetlands and other waters in May 2017 for the Sagamore Companies at their 28-acre Avon Commerce Parkway property (Parcel #0400009000157) located west of Moore Road, at the eastern terminus of Avon Commerce Parkway, in the City of Avon, Lorain County, Ohio. The approximate center coordinates of the project area are 41.477175°, -82.042631°.

The project area consists primarily of open field and wetland communities. The surrounding land use consists of forest to the east, and commercial properties to the south and west, and an active railroad to the north. Three (3) distinct vegetative communities were identified within the project area. Two (2) wetland community types were identified onsite and include palustrine emergent (PEM) and palustrine scrub-shrub (PSS).

Three (3) wetlands were identified and delineated within the study area accounting for 10.683 acres of wetland onsite. One (1) retention basin was also identified within the project area. The retention basin is considered a non-jurisdictional man-made feature. Onsite wetlands are under the jurisdiction of the Ohio EPA or U.S. Army Corps of Engineers (USACE). The project area is in the Buffalo District of the USACE. No filling may occur within these areas without their written permission. Please contact the Ohio EPA Division of Surface Water at (614) 644-2001 or the Buffalo District USACE at (716) 879-4330 before working in these areas.

1.0 INTRODUCTION AND SITE DESCRIPTION

EnviroScience, Inc. performed a delineation of wetlands and other waters in May 2017 for the Sagamore Companies at their 28-acre Avon Commerce Parkway property (Parcel #0400009000157) located west of Moore Road, at the eastern terminus of Avon Commerce Parkway, in the City of Avon, Lorain County, Ohio (Figure 1, Appendix A). The approximate center coordinates of the project area are 41.477175°, -82.042631°.

The project area consists primarily of open field and wetland communities. The surrounding land use consists of forest to the east, commercial properties to the south and west, and active railroad to the north. Three (3) distinct vegetative communities were identified within the project area. Two (2) wetland community types were identified onsite and include PEM and PSS. The project area contains three (3) wetlands and one (1) non-jurisdictional open water.

The site is located in the Black-Rocky watershed (Hydrologic #04110001) which drains approximately 989 square miles in northeast Ohio. It is within the Eastern Great Lakes Lowlands ecoregion (Woods *et al.* 1998) of Ohio. The study area is located within the area covered by the Northcentral and Northeast Regional Supplement (USACE 2012) and associated plant list (Lichvar 2014). The project area is regulated by the USACE Buffalo District.

2.0 METHODS

Government agencies regulate coastal and inland waters for commerce, flood control and water quality. These water bodies provide numerous functions and values necessary to protect and sustain our quality of life. Wetlands comprise a significant portion of regulated waters. The USACE and U.S. Environmental Protection Agency (EPA) jointly define wetlands as:

"Those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas."

The remaining deepwater aquatic habitats (open waters) are defined by the *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory 1987) as:

". . . areas that are permanently inundated at mean annual water depths >6.6 ft or permanently inundated areas <6.6 ft in depth that do not support rooted emergent or woody plant species."

The methods used for determining and delineating wetlands and open waters strictly adhere to those found in the *Corps of Engineers Wetlands Delineation Manual*

(Environmental Laboratory 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region* (USACE 2012). Wetlands and open water boundaries were determined by the disappearance of one or more of their diagnostic characteristics.

Ordinary high water marks (OHWM) defined the outermost regulatory boundaries of ephemeral and open waters.

Each sample plot and the perimeter of each wetland and other water was surveyed and marked in the field with plain pink flags and pink "wetland boundary" flags, respectively. A global positioning system (GPS) unit with submeter accuracy was used, in conjunction with aerial photography and topographic maps, for the survey. Computer Aided Design (CAD) software was used to determine wetland dimensions and Geographic Information Systems (GIS) software was used to produce a map of the project area showing wetlands and other waters.

2.1 WETLANDS

2.1.1 Determination

A review of secondary literature sources was performed to find known wetlands and other significant ecological resources and areas with high potential for wetlands in or near the proposed project area. Resources included the following:

- 1. U.S. Geological Survey (USGS) topographic maps;
- 2. National Wetlands Inventory (NWI) maps;
- 3. Web Soil Survey; and
- 4. Aerial Photographs.

A field inspection of the project area was then completed to identify major plant communities and to visually locate potential wetlands. The routine, onsite (Level 2) wetland determination was used to perform the delineation. Wetland communities were classified according to the classification scheme of Cowardin *et al.* (1979) (Table 1). Mature nonwetland communities that had reached a stable equilibrium were classified according to Anderson (1982) and Gordon (1966, 1969). Disturbed and successional nonwetland communities were classified as one of the categories described in Table 2.

Community	Description				
PEM	Palustrine Emergent				
PSS	Palustrine Scrub-Shrub				
PFO	Palustrine Forested				
POW	Palustrine Open Water				

Table 1. Wetland Communities (Cowardin et al. 1979).

Community		Description
p	Urban	regularly maintained land; residential; industrial
urbe	Agricultural	land used for producing crops or raising livestock; cropland; pastureland
Dist	Cleared	disturbed areas devoid of most vegetation from recent clearing, grading or filling
al	Open Field	herbaceous community without woody vegetation
sion	Old Field	herbaceous community having woody vegetation coverage of <50%
cces	Scrub-Shrub	community dominated by woody vegetation <6 m (20 ft) tall
Suc	Forest	community dominated by woody vegetation >6 m (20 ft) tall

Table 2. Disturbed and Successional Nonwetland Communities.

Sample plots were established within each natural community and potential wetland within the study area. Complete data for each sample plot were collected and recorded on the USACE's Routine Wetland Determination Data Forms contained in the applicable USACE Regional Supplement (USACE 2012). Vegetation, hydrology and soils were evaluated at each sample plot.

2.1.1.1 Vegetation

To detect the presence or absence of hydrophytic vegetation, four plant strata were evaluated within specific radii of the plot center. Each stratum was ranked by aerial cover in descending order of abundance. Table 3 provides information on each vegetative stratum.

Stratum	Definition	Survey Area
Tree woody plants > or equal to 3 in. (7.6 cm) diame at breast height (dbh), regardless of height		30 ft (9.1 m) radius
Sapling/shrub	woody plants <3 in. (7.6 cm) dbh and <u>></u> 3.28 ft (1 m) tall	15 ft (4.6 m) radius
Herbaceous	herbs and woody plants less than 3.28 ft (1 m) in height	5 ft (1.5 m) radius
Woody vines	woody vines >3.28 ft (1 m) in height	30 ft (9.1 m) radius

Table 3.	Vegetative	Strata.
----------	------------	---------

Percent dominance was obtained for each species and within each stratum. Dominant species are those which cumulatively totaled in order of abundance immediately exceed 50% and also include any individual species with an abundance of 20% or more (USACE 2012). Dominant taxa were identified using recognized local guides:

nomenclature follows the *National List of Scientific Plant Names* (USDA 1982). Following the identification of each plant species present within the plot, all dominant species within each stratum were assigned a wetland indicator status according to Lichvar (2014). Indicators are summarized in Table 4.

Indicator Category		Definition		
OBL	Obligate Wetland	almost exclusively (>99% of occurrences) found in wetlands		
FACW Facultative Wetland		most likely found in wetlands (67-99% of occurrences)		
FAC	Facultative	equally likely found in wetlands or nonwetlands (34-66%)		
FACU Facultative Upland		most likely found in nonwetlands (1-33% occurrence in wetlands)		
UPL	Obligate Upland	almost exclusively found in nonwetlands (<1% occurrence in wetlands)		

Table 4. Plant Indicators.

An 'NI' (no indicator) designation represents species where not enough information is available to assign an indicator; an 'NL' (no listing) designation is given to species whose identification was not determined sufficiently enough to assign an indicator. Once the indicator status is assigned to each dominant species, the evaluator can perform the percent dominance test according to the protocol outlined within the applicable Regional Supplement (USACE 2012) to determine if the plot meets the criterion for hydrophytic vegetation.

2.1.1.2 Hydrology

To detect the presence or absence of wetland hydrology, surface and subsurface hydrologic indicators were evaluated at the sample plot and throughout the adjacent community. Primary sources of wetland hydrology include direct precipitation, headwater flooding, backwater flooding, groundwater or any combination of these. When obtaining data at each sample plot, the evaluator observes evidence of hydrology. Primary indicators of hydrology (only one of these is necessary to indicate sufficient wetland hydrology) include the presence of surface water, water marks, sediment deposits, drift deposits, etc. (USACE 2012). Secondary indicators of hydrology (which requires two or more at each sample plot) include surface soil cracks, drainage patterns, crayfish burrows, etc. (USACE 2012).

2.1.1.3 Soils

The upper horizons of the soil at each sample plot were examined to detect the presence or absence of hydric soils indicators. Current USACE guidance requires the evaluator to assess the upper 20 inches of soil for hydric soil characteristics. Most indicators of hydric soils require an assessment of soil matrix color and mottle characteristics (Environmental Laboratory 1987, USACE 2012) for each horizon. These characteristics were determined by comparing a moist sample with *Munsell Soil Color Chart* (Munsell Color 2009) or *The Globe Soil Color Book* (Visual Color Systems, 2004).

2.1.2 ORAM Categorization

Each wetland system was categorized in accordance with version 5.0 of the Ohio EPA's Ohio Rapid Assessment Method for Wetlands (ORAM) (Mack 2000, 2001). Field scoring forms are contained in Appendix D.

Ohio EPA has established three primary and three intermediate categories of wetland quality which are based on a wetland's size, its hydrologic function, the types of plant communities present, the physical structure of the wetland plant community and the wetland's level of disturbance (OAC 3745-1-54). The relationship between the various wetland categories and their respective ORAM scores is presented in Table 5. EnviroScience also evaluated the project area for the presence of state threatened and endangered species as part of the ORAM evaluation.

Category 3 wetlands have the highest quality, and are generally characterized by a high level of biological diversity and topographical variation, large numbers of native species, or a high level of functional importance to its surroundings. Category 2 wetlands have the capability to support a moderate wildlife community or maintain mid-level hydrological functions. Category 2 also includes wetlands that may be of lower quality or degraded but have reasonable potential to be restored (Modified Category 2). Category 1 wetlands are of the lowest quality, and are generally characterized by hydrological isolation, lack of plant species diversity, insufficient habitat availability, and limited potential to perform major wetland functions (OAC 3745-1-54).

ORAM Score	ORAM Category	Description
0-29.9	Category 1	Lowest quality, and are generally characterized by hydrological isolation, lack of plant species diversity, insufficient habitat availability, and limited potential to perform major wetland functions.
30-34.9	Category 1 or 2 (Gray Zone)	ORAM score is insufficient to categorize wetland. In absence of a nonrapid method such as VIBI, assign the wetland to the higher functional category (Category 2)
35-44.9	Modified Category 2	Category 2 wetlands that may be of lower quality or degraded but have reasonable potential to be restored.
45-59.9	Category 2	Wetlands that have the capability to support a moderate wildlife community or maintain mid-level hydrological functions.
60-64.9	Category 2 or 3 (Gray Zone)	ORAM score is insufficient to categorize wetland. In absence of a nonrapid method such as VIBI, assign the wetland to the higher functional category (Category 3)
65-100	Category 3	Highest quality, generally characterized by a high level of biological diversity and topographical variation, threatened or endangered species, large numbers of native species, or a high level of functional importance to its surroundings.

 Table 5. ORAM Scores and Categories.

Since the ORAM is a rapid assessment method, there are certain wetland scores which fail to clearly differentiate the wetland's functional category. The so-called "gray zone" wetlands fall between the definite scoring breaks between the categories. Ohio EPA requires that "gray zone" wetlands be considered as the higher category unless more detailed functional assessments such as the VIBI or AmphIBI are conducted on those wetlands. As a result of this requirement, wetlands whose scores fall between the breakpoints for Categories 1 and 2 (1 or 2 gray zone wetlands) wetlands will be considered as Category 2 wetland for purposes of this report. Wetlands whose scores fall between the breakpoints for Categories 2 and 3 wetlands (2 or 3 gray zone wetlands) will be considered a Category 3 wetland for purposes of this report.

2.1.3 Cowardin Wetland Classification

The U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory uses the *Classification of Wetlands and Deepwater Habitats of the United States* to classify wetland habitat types (Cowardin *et al.* 1979). This classification system is hierarchical and defines five major systems – Marine, Estuarine, Riverine, Lacustrine, and Palustrine. The Palustrine system was the only type of wetland system identified within the study area and is defined as including all nontidal wetlands dominated by trees, shrubs, persistent emergents, emergent mosses or lichens, and all such wetlands that occur in tidal areas where salinity due to ocean driven-derived salts is below 0.5 percent (Cowardin *et al.* 1979).

2.2 OTHER WATERS

Other waters include ephemeral and open waters. These waters are broken down into two categories: 1) ponds and lakes; and 2) streams and rivers.

2.2.1 Ponds and Lakes

Palustrine systems other than wetlands, and lacustrine waters are addressed as ponds and lakes, respectively. These non-linear open waters may harbor important aquatic communities such as vegetated shallows (aquatic bed) and mud flats. They are classified according to Cowardin *et al.* (1979).

2.2.2 Streams and Rivers

Riverine systems are linear flowing waters bounded by a channel. Cowardin *et al.* (1979) divides these system into four groups, however, for the purpose of this report streams are placed into three regulatory types, listed below.

- Ephemeral: An ephemeral stream only conveys runoff precipitation and meltwater. It is permanently located above the water table and is most often dry.
- Intermittent: An intermittent stream is located below the water table for parts of the year, but does have dry periods.
- Perennial: A perennial stream typically has flowing water throughout the entire year.

In addition to flow characteristics, the USACE has defined other regulatory categories that apply to streams, which are listed below (USACE and USEPA, 2007).

- <u>Traditional Navigable Waters (TNW)</u>: all waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide.
- <u>Relatively Permanent Waters (RPW)</u>: non-navigable tributaries of traditional navigable waters that are relatively permanent where the tributaries typically flow year-round or have continuous flow at least seasonally (e.g., typically three months).

<u>Non-Relatively Permanent Waters (Non-RPW)</u>: non-navigable tributaries of traditional navigable waters that are not relatively permanent where the tributaries typically do not have continuous flow at least seasonally (e.g., typically three months).

The Corps and USEPA will assert jurisdiction under the Clean Water Act on Traditional Navigable Waters (TNWs) and all wetlands adjacent to them, non-navigable tributaries of TNWs that are Relatively Permanent Waters (RPW) [i.e., tributaries that typically flow year-round or have continuous flow at least seasonally]; and wetlands that directly abut such tributaries. In addition, the agencies will assert jurisdiction over every water body that is not an RPW if that water body is determined (on the basis of a fact-specific analysis) to have a significant nexus with a TNW.

"A significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or an insubstantial effect on the chemical, physical, and/or biological, integrity of a TNW. Principal considerations when evaluating significant nexus include the volume, duration, and frequency of the flow of water in the tributary and the proximity of the tributary to a TNW, plus the hydrologic, ecologic, and other functions performed by the tributary and all of its adjacent wetlands."

In 2015, the USEPA and USACE issued the Clean Water Rule, which attempts to clarify the definition of waters of the U.S. On October 9, 2015, the Sixth U.S. Circuit Court of appeals issued a nationwide Order of Stay barring implementation of the rule pending appeal.

2.2.3 HHEI and QHEI

Data collection for all streams included the completion of either the Ohio EPA Headwater Habitat Evaluation Index (HHEI) for primary headwater habitat (PHWH) streams or the Qualitative Habitat Evaluation Index (QHEI) for larger streams. Biologists are Ohio EPA trained to assess streams using the QHEI and HHEI. Following the Ohio EPA guidance, any stream with a drainage area of less than or equal to one mi² (2.589 km²) and pools with a maximum water depths less than or equal to 15.75 in (40 cm) were evaluated using the HHEI (Ohio EPA 2012). The QHEI was used to evaluate streams with drainage areas greater than one mi² and pools with maximum water depths greater than 15.75 in (40 cm). The assessment location is representative of the stream/headwater within the project area.

3.0 LITERATURE REVIEW

3.1 USGS TOPOGRAPHIC MAP

The U.S. Geological Survey (USGS) 7.5-minute topographic series map of the site (Avon Quadrangle) is shown on Figure 2 (Appendix A). The project area is located east of Moore Road and south of a railroad line. The project area is depicted as generally flat. A portion of the project area is shown as an orchard. One intermittent stream is depicted partially onsite, along the eastern limits of the project area. The onsite portion of this stream was delineated as wetland during the field visit due to presence of emergent vegetation within the channel. Elevation is approximately 625 feet above mean sea level (AMSL).

3.2 NWI MAP

The National Wetlands Inventory (NWI) map (Avon Quadrangle) of the project area is shown on Figure 3 in Appendix A. One (1) intermittent, streambed, seasonally flooded riverine (R4SBC) system is shown onsite. This stream system corresponds with the intermittent stream shown on the USGS map as discussed in the section above. One (1) scrub-shrub, broad-leaved deciduous, seasonally flooded, palustrine (PSS1C) system is shown onsite. This system corresponds to the southern portion of Wetland W-3. One (1) unconsolidated bottom, intermittently exposed, excavated, palustrine (PUBGx) system is shown onsite. This excavated pond corresponds to the retention basin in the northwest portion of the project area.

3.3 COUNTY SOIL SURVEY

The study area is found on the *Soil Survey of Lorain County, Ohio* and was accessed on the Soil Survey Geographic (SSURGO) Database (USDA Web Soil Survey, 2009) (Figure 4, Appendix A). Two (2) soil types were identified within the project area. One (1) soil type, Lorain silty clay loam (Ln), is listed as hydric and one (1) soil type, Miner silty clay loam, 0 to 2 percent slopes (Mr), is listed as predominantly hydric within Lorain County. Table 6 summarizes onsite soil data.

Symbol	Soil Name	Status	Common Landform	Percent Hydric	Acres in Project Area	Percent Within Project Area
Mr	Miner silty clay loam, 0 to 2 percent slopes	Predominantly Hydric	depressions	95	20.04	71.3
Ln	Lorain silty clay loam	Hydric	depressions, glacial lakes	100	8.08	28.7

Table 6. Soil Types Mapped in Summit County.

3.4 AERIAL PHOTOGRAPHY

A recent aerial photograph of the study area is shown on Figure 5 (Appendix A). The project area is located east of the eastern terminus of Avon Commerce Parkway. A storm water retention basin is shown in the northwest corner of the project area. The project area consists primarily as wetland and open field vegetation. The surrounding land use exists as forest to the east, commercial development to the south and west, and active railroad to the north.

3.5 FEMA FLOOD INSURANCE RATE MAP

The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate Maps (FIRM), which show the locations of predictable floodplain during precipitation flood events. The FIRM map of the project area was examined; the project area is not within a designated 100-Year Floodplain area.

3.6 OHIO NATURAL HERITAGE DATABASE

The Ohio Department of Natural Resources (ODNR) Natural Heritage Database contains no records of rare or endangered species within a one (1) mile radius of the site (Appendix E). No other unique ecological areas, geologic features, animal assemblages, scenic rivers, state wildlife areas, nature preserves, parks or forests, national wildlife refuges, parks or forests, or other protected natural areas within a one (1) mile radius of the project area were noted.

3.7 U.S. FISH AND WILDLIFE SERVICE

The project area was examined for suitable habitat for federally listed species whose known range includes Lorain County, Ohio. These species are the federally endangered Indiana bat (*Myotis sodalis*), the federally threatened northern long-eared bat (*Myotis septentrionalis*), the federally endangered Kirtland's warbler (*Setophaga kirtlandii*), the federally endangered piping plover (*Charadrius melodus*), the federally threatened rufa red knot (*Calidris canutus rufa*), and the federal species of concern, the bald eagle (*Haliaeetus leucocephalus*).

Living or dead trees with shedding or peeling bark or cavities may serve as roosting trees for the Indiana bat and/or the northern long-eared bat. In addition, sheds and barns may serve as roosting habitat for the northern long-eared bat. No winter hibernaculum or potential habitat trees were observed within the project area. If this project has federal ties, coordination with the USFWS is required prior to tree clearing. If trees must be cleared, the USFWS will likely require that this be completed between October 1st and March 31st.

The Kirtland's warbler utilizes forested and scrub-shrub habitat along Lake Erie shoreline counties during migration. If the project is located within three miles of the Lake Erie shoreline and habitat is present, no shrub or tree clearing should occur from April 22nd to June 1st and from August 15th to October 15th. However, very little forest and shrub habitat is located within the project area and is mostly along the perimeter of the site. If this project has federal ties, coordination with the USFWS is required prior to tree and shrub clearing. If trees and shrubs must be cleared, the USFWS will likely require that this be completed between October 16th to April 21st or June 2nd to August 14th.

Habitat for the piping plover includes coastal beaches and shorelines of the Great Lakes. Piping plovers breed on sparsely vegetated beaches, cobble pans, or sand spits of sand dune ecosystems along the Great Lakes shorelines. No habitat for the piping plover exists within the study area.

Habitat for the rufa red knot consists of dry tundra areas, including sparsely vegetated hillsides during the breeding season. Outside the breeding season they are found primarily in intertidal, marine habitats, especially near coastal inlets, estuaries, and bays. No habitat for the rufa red knot exists within the study area.

The bald eagle nests in large trees near water. No bald eagles or nests were observed within or adjacent to the project area.

4.0 RESULTS

Five (5) sample plots were established within two (2) vegetative communities. One (1) of these communities is considered a wetland community. Table 7 summarizes the sample plot data.

Sample Plot	Photo*	Community**	Hydrophytic Vegetation	Wetlands Hydrology	Hydric Soil	Status	Location
1	1	Open Field		Х	Х	Non-wetland	SP-1
2	2	PEM	Х	Х	Х	Wetland	W-1b
3	3	PEM	Х	Х	Х	Wetland	W-2
4	4	PEM	Х	Х	Х	Wetland	W-3
5	5	Open Field				Non-wetland	SP-5

Table 7.	Sample Plo	t Results.
----------	------------	------------

*photos are located in Appendix B;

**PEM = Palustrine Emergent

Each sample plot, delineated wetland, and other waters are illustrated on Figure 5 (Appendix A). The following section describes general conditions found within each plant community and summarizes information from the data forms, located in Appendix C.

4.1 NONWETLANDS

One (1) upland community, open field, exists within the study area. Sample Plot 1 and Sample Plot 5 represent the open field community. Sample Plot 1 is located in the northwestern portion of the project area, the dominant species within the herbaceous stratum include common reed (*Phragmites australis*, FACW), glossy false buckthorn (*Frangula alnus*, FAC), and rambler's rose (*Rosa multiflora*, FACU). Although not dominant within the community, Virginia-creeper (*Parthenocissus quinquefolia*, FACU) and eastern poison ivy (*Taraxacum officinale*, FACU) are growing in the woody vine layer and glossy false buckthorn and rambler's rose are present in the shrub layer. Sample Plot 5 is located in the central portion of the project area. The dominant species within the herbaceous stratum is tall false rye grass (*Schedonorus arundinaceus*, FACU). Other typical species present within the upland, open field sample plots include tall goldenrod (*Solidago altissima*, FACU), and Alleghany blackberry (*Rubus allegheniensis*, FACU).

4.2 WETLANDS

Three (3) wetlands were identified and delineated within the project area. The onsite portions of wetland consist of palustrine emergent (PEM) and palustrine scrub-shrub (PSS) vegetative communities. The wetlands have been categorized using the Ohio Rapid Assessment Method for Wetlands v.5.0 (ORAM); the scoring forms are included in Appendix D. Wetland results are given in Table 8 and are briefly described in the following section. Wetland size has been determined for the portion of the wetlands within the study area. These wetlands are illustrated on Figure 5 (Appendix A).

Wetland		Photo*	Cowardin Class	ORAM Score	ORAM Category	Size Within Study Area (acres)
	а		PEM	31.5	1 or 2 gray zone	0.057
	h	6	PSS			0.033
W-1	D		PEM			1.089
	С		PEM			0.002
	d		PEM			0.001
W-2		7	PEM	29.5	1	0.067
W-3		8	PEM 39 Modified 2		9.434	
Total Wetlands						10.683

Table 8. Wetland Results	s within the	Project Area.
--------------------------	--------------	---------------

*photos are located in Appendix B

Wetland W-1 is primarily a PEM wetland with a small portion of PSS. Sample Plot 2 is located within Wetland W-1b and represents the PEM community within Wetland W-1. Common reed is the dominant species within the herbaceous layer of Sample Plot 2.

Other typical herbaceous species within Wetland W-1 are fowl blue grass (*Poa palustris*, FACW), lamp rush (*Juncus effusus*, OBL), and shoreline sedge (*Carex hyalinolepis*, OBL). Although not dominant within the PEM wetland, glossy false buckthorn is present in the shrub layer. Although not characterized by a sample plot, the PSS portion of Wetland W-1 is dominated by glossy false buckthorn in the shrub layer.

Sample Plot 3 represents the PEM community within Wetland W-2. Lamp rush and shoreline sedge are the dominant herbaceous species; tall goldenrod, climbing nightshade (*Solanum dulcamara*, FAC) are other species present within the herbaceous layer of Sample Plot 3.

Sample Plot 4 represents the PEM community within Wetland W-3. Common reed and pointed broom sedge (*Carex scoparia*, FACW) are the dominant species within the herbaceous stratum. Other typical species present include wand panic grass (*Panicum cirgatum*, FAC) and ditch stonecrop (*Penthorum sedoides*, OBL).

Wetland W-1 crosses the project area at four (4) locations (Wetlands W-1a, W-1b, W-1c, and W-1d) and extends offsite to the north. The onsite portions of Wetland W-1 are hydrologically connected by an offsite drainage ditch to the north that contains hydric soil and hydrophytic vegetation. Wetland W-1 assessed within the range of a Category 1 or 2 (gray zone) wetland using the ORAM scoring method. Based on ORAM guidance, a wetland that scores within the range of a Category 1 or 2 gray zone is considered a Category 2 wetland. The wetland score was a result of overall wetland size, medium upland buffers, moderately high to low intensity of surrounding land use, multiple sources of hydrology, degree of substrate and habitat disturbance, low horizontal interspersion, and moderate coverage of invasive species.

Wetland W-2 assessed within the range of a Category 1 wetland. The wetland score was a result of relatively small overall size, medium upland buffers, moderately high to low intensity of surrounding land use, single source of hydrology, recovering modifications to hydrology, degree of substrate disturbance and habitat alteration, poor habitat development, and moderate coverage of invasive species.

Wetland W-3 extends offsite to the east and into an unnamed stream/linear wetland that flows along the eastern boundary of the project area. Wetland W-3 assessed within the range of a modified Category 2 wetland. The score was a result of overall wetland size, medium upland buffers, high to moderately low intensity of surrounding land use, multiple source hydrology, hydrologic connectivity, maximum water depth, fair habitat development, moderate coverage of invasive species, and amount of microtopography.

4.3 STREAMS AND RIVERS

No stream or river resources were identified within the project area.

4.4 PONDS AND LAKES

One (1) open water aquatic resources were identified within the project area. The open water resource is a man-made excavated retention basin that is classified as a non-jurisdictional water and is not subject to USACE regulations. Table 9 below outlines the size of this open water feature.

Tahla Q	Ponde Lakes	and Other O	non Wator	Fosturos	within the	Project Area
i able 3.	FUIIUS, Lakes,		pen water	realures	within the	FIUJELL AIEa.

Open Water	Photos*	Туре	Size Within Study Area (acres)
RB	9	Open Water	0.237
	0.237		

*photos are located in Appendix B

5.0 REGULATORY JURISDICTION

The streams, wetlands and deepwater habitats described in this document are under the jurisdiction either of the U.S. Army Corps of Engineers or the Ohio EPA. No filling may occur in these areas without their written permission. Please contact the Ohio EPA Division of Surface Water at (614) 644-2001 or the Buffalo District USACE at (716) 879-4330 before working in these areas.

The following information is excerpted and summarized from the 2007 U.S. Army Corps of Engineers Jurisdictional Determination Form Instructional Guidebook.

"In 2001, the ... U.S. Supreme Court's decision in the *Solid Waste Agency of Northern Cook County* (*SWANCC*) v. *Corps* held that isolated, intrastate, non-navigable waters could not be regulated under the CWA based solely on the presence of migratory birds. Following the SWANCC decision it generally was believed that a water body (including a wetland) was subject to CWA jurisdiction if the water body was part of the U.S. territorial seas, or a traditional navigable water, or any tributary to a traditional navigable water, or a wetland adjacent to any one of the above. In addition, isolated wetlands and other waters might be considered jurisdictional where they had the necessary link to either navigable waters or interstate commerce."

In the state of Ohio, the Ohio EPA isolated wetland permitting program was legislatively created in response to the 2001 SWANC decision. On July 17, 2001, House Bill 231 was

signed into law, establishing a permanent permitting process for isolated wetlands. The provisions of House Bill 231 were incorporated in Sections 6111.021 through 6111.029 of the Ohio Revised Code.

"In 2006, the Supreme Court once again addressed the jurisdictional scope of Section 404 of the CWA, specifically the term "the waters of the U.S.," in *Rapanos v. U.S.* and in *Carabell v. U.S.* (hereafter referred to as Rapanos).

The decision provides two new analytical standards for determining whether water bodies that are not traditional navigable waters (TNWs), including wetlands adjacent to those non-TNWs, are subject to CWA jurisdiction: (1) if the water body is relatively permanent, or if the water body is a wetland that directly abuts (e.g., the wetland is not separated from the tributary by uplands, a berm, dike, or similar feature) a relatively permanent water body (RPW), or (2) if a water body, in combination with all wetlands adjacent to that water body, has a significant nexus with TNWs. CWA jurisdiction over TNWs and their adjacent wetlands was not in question in this case, and, therefore, was not affected by the Rapanos decision. In addition, at least five of the Justices in Rapanos agreed that CWA jurisdiction exists over all TNWs and over all wetlands adjacent to TNWs.

The Memo states that the [Corps and USEPA] will assert jurisdiction over the following categories of water bodies: TNWs; all wetlands adjacent to TNWs; non-navigable tributaries of TNWs that are relatively permanent (i.e., tributaries that typically flow year-round or have continuous flow at least seasonally); and wetlands that directly about such tributaries. In addition, the agencies will assert jurisdiction over every water body that is not an RPW if that water body is determined (on the basis of a fact-specific analysis) to have a significant nexus with a TNW. The classes of water body that are subject to CWA jurisdiction only if such a significant nexus is demonstrated are: non-navigable tributaries that do not typically flow year-round or have continuous flow at least seasonally; wetlands adjacent to such tributaries; and wetlands adjacent to but that do not directly about a relatively permanent, non-navigable tributary. A significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or an insubstantial effect on the chemical, physical, and/or biological, integrity of a TNW. Principal considerations when evaluating significant nexus include the volume, duration, and frequency of the flow of water in the tributary and the proximity of the tributary to a TNW, plus the hydrologic, ecologic, and other functions performed by the tributary and all of its adjacent wetlands."

6.0 ASSUMPTIONS AND DISCLAIMERS

The constant influence of human activity on the study area can result in a rapid change of ecological boundaries. Over time, natural succession and changes in hydrology can also affect their boundaries. Precision of GPS collected data is subject to variation caused by canopy cover, atmospheric interference and satellite configuration. Because slight inaccuracies are possible, all acreages and derived boundaries presented in this report are approximate.

The results and conclusions contained in this report apply to the year and date in which the data were collected. This report is not considered officially valid until it is approved

by the Corps. The report is then valid for a period of five years. Refer to the Corps' Regulatory Guidance Letter # 94-1 (23 May 1994).

REFERENCES

- Anderson, D.M. 1982. *Plant Communities of Ohio: A Preliminary Classification and Description*. Ohio Department of Natural Resources, Division of Natural Areas and Preserves, Columbus, Ohio.
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. *Classifications of Wetlands and Deepwater Habitats of the United States.* FWS/OBS-79/31. U.S. Department of Interior, Fish and Wildlife Service, Office of Biological Services, Washington, D.C.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Gordon, R.B. 1966. Original Vegetation of Ohio at the Time of the Earliest Land Surveys. Bulletin of the Ohio Biological Survey, Vol III, No. 2. The Ohio State University, Columbus.
- Gordon, R. B. 1969. The Natural Vegetation of Ohio in Pioneer Days. Ohio Biological Survey Bulletin (New Series) 3:1-109.
- Lichvar, R.W. 2014. The National Plant List. Technical Report ERDC/CRREL TR-12-11. Cold Regions Research and Engineering Laboratory, U.S. Army Engineer Research and Development Center, Hanover, NH.
- Mack, J.J. 2000. ORAM v. 5.0 Quantitative Score Calibration. Ohio Environmental Protection Agency, Division of Surface Water, Wetland Ecology Unit, Columbus, Ohio.
- Mack, J.J. 2001. Ohio Rapid Assessment Method for Wetlands v. 5.0, User's Manual and Scoring Forms. Ohio EPA Technical Report WET/2001-1. Ohio Environmental Protection Agency, Division of Surface Water, 401/Wetland Ecology Unit, Columbus, Ohio.
- Munsell Color. 2009. Munsell Soil Color Charts (Rev. ed.). Grand Rapids, Michigan.
- Ohio Environmental Protection Agency, 2006. *Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI)*. Ohio EPA Technical Bulletin EAS/2006-06-1. Ohio EPA Division of Surface Water, Columbus, Ohio.
- Ohio Environmental Protection Agency, 2012. *Field Evaluation Manual for Ohio's Primary Headwater Habitat Streams*. Version 3.0. Ohio EPA Division of Surface Water, Columbus, Ohio. 117 pp.
- Ohio Department of Natural Resources, Division of Wildlife Website. 2012. http://www.dnr.state.oh.us/Home/species a to z/SpeciesGuideIndex/tabid/6491/Default.aspx
- Ohio Department of Natural Resources, Division of Natural Areas and Preserves Website. 2012. http://ohiodnr.com/Home/Rare_Plants/RareNativeOhioPlants/tabid/22557/Default.aspx
- Rapanos vs. United States; June Carabell, et al., Petitioners vs. United States Army Corps of Engineers.547 U.S. 715. 2006.
- Solid Waste Agency of Northern Cook County vs. U.S. Army Corps of Engineers.531 U.S. 159. 2001.
- U.S. Army Corps of Engineers. 1994. Regulatory Guidance Letter 94-01. Expiration of Geographic Jurisdictional Determinations.
- U.S. Army Corps of Engineers. 2012. Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Northcentral and Northeast Region (version 2.0). Technical Report ERDC/EL TR-12-1. US Army Engineer Research and Development Center, Vicksburg, Mississippi.
- U.S. Army Corps of Engineers and U.S. Environmental Protection Agency. 2007. U.S.Army Corps of Engineers Jurisdictional Determination Form Instructional Guidebook. Washington, D.C.
- U.S. Department of Agriculture. 2010. Web Soil Survey. USDA. Natural Resource Conservation Service. http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.
- U.S. Department of Agriculture, Soil Conservation Service. 1982. National List of Scientific Plant Names. 1. List of plant names;
 2. Synonymy SCS-13 General Notes and Selected References TP-159. U.S. Department of Agriculture, Washington, DC: 416- 438.
- U.S. Fish and Wildlife Service. 2010. Wetlands Mapper Documentation and Instructions Manual. U.S. Fish and Wildlife Service, Division of Habitat and Resource Conservation, Branch of Resource and Mapping Support, National Standards and Support Team, Madison, WI 53711-1061.

Visual Color Systems. 2004. The Globe Soil Color Book. Mountaindale, New York

Woods, A.J., J.M. Omernick, C.S. Brockman, T.D. Gerber, W.D. Hosteter and S.H. Azevedo. 1998. *Ecoregions of Indiana and Ohio*. U.S. Geological Survey, Denver, Colorado.

Appendix A:

Figures

 \sim

Appendix B:

Photographs

Photo 1. Sample Plot 1 representing an open field community within the project area.

Photo 2. Sample Plot 2 representing a palustrine emergent (PEM) wetland community within Wetland W-1.

Photo 3. Sample Plot 3 representing a PEM community within Wetland W-2.

Photo 4. Sample Plot 4 representing a PEM community within Wetland W-3.

Photo 5. Sample Plot 5 representing an open field community within the project area.

Photo 6. Wetland W-1 facing northeast.

Photo 7. Wetland W-2 facing west.

Photo 8. Wetland W-3 facing east.

Photo 9. Storm water retention basin within the project area.

Appendix C:

Routine Wetland Determination Data Forms
Project/Site: Sagamore Soils - Avon	Commerce Parkway	City/County: Avon/Lorain	Sampling Date: 5/23/17					
Applicant/Owner: Sagamore Com	npanies	State: OH						
Investigator(s): R. Warren, L. Sayre;	EnviroScience, Inc.	Section, Township, Range:						
Landform (hillside, terrace, etc.): Fla	at Loc	cal relief (concave, convex, none): <u>None</u>	Slope %:					
Subregion (LRR or MLRA): LRR R, I	MLRA 139 Lat: 41.477933	Long:82.044558	Datum: WGS 84					
Soil Map Unit Name: Miner silty clay loam, 0 to 2 percent slopes NWI classification: N/A								
Are climatic / hydrologic conditions on	the site typical for this time of year	<pre> Yes X No (If no, </pre>	explain in Remarks.)					
Are Vegetation, Soil, c	or Hydrologysignificantly dis	sturbed? Are "Normal Circumstances" pres	sent? Yes X No					
Are Vegetation, Soil, c	or Hydrologynaturally proble	ematic? (If needed, explain any answers i	n Remarks.)					
SUMMARY OF FINDINGS – A	attach site map showing sa	ampling point locations, transects, in	nportant features, etc.					
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled Area						
Hydric Soil Present?	Yes X No	within a Wetland? Yes	No <u>X</u>					
Wetland Hydrology Present?	Yes X No	If yes, optional Wetland Site ID:						
Remarks: (Explain alternative proced Open field	Jures here or in a separate report.)							

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)		
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)				
Surface Water (A1)		Drainage Patterns (B10)			
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)		
X Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)		
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	s (C6)	Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)		
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface (B	8)		FAC-Neutral Test (D5)		
Field Observations:					
Surface Water Present? Yes	No x Depth (inches):				
Water Table Present? Yes	No x Depth (inches):				
Saturation Present? Yes x	No Depth (inches): 0	Wetlan	tland Hydrology Present? Yes X No		
(includes capillary fringe)					
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous inspe	ections), if	available:		
Remarks:					
Saturation present 0-4". Perched water table	on dense SiL/SiCL. Furrows present fro	m historica	al AG land use.		

Sampling Point: SP-1

Tree Stratum (Plot aize: 20)	Absolute	Dominant	Indicator	Dominance Test worksheet			
	% Cover	Species	Status	Dominance rest worksheet.			
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)			
3				Total Number of Dominant			
4				Species Across All Strata: 7 (B)			
5				Percent of Dominant Species			
6				That Are OBL, FACW, or FAC: 42.9% (A/B)			
7				Prevalence Index worksheet:			
		=Total Cover		Total % Cover of: Multiply by:			
Sapling/Shrub Stratum (Plot size: 15)				OBL species 0 x 1 = 0			
1. Frangula alnus	10	Yes	FAC	FACW species 30 x 2 = 60			
2. Rosa multiflora	8	Yes	FACU	FAC species 30 x 3 = 90			
3.				FACU species 61 x 4 = 244			
4.				UPL species 0 x 5 = 0			
5.				Column Totals: 121 (A) 394 (B)			
6.				Prevalence Index = $B/A = 3.26$			
7.				Hydrophytic Vegetation Indicators:			
	18	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation			
Herb Stratum (Plot size: 5)				2 - Dominance Test is >50%			
1. Phragmites australis	25	Yes	FACW	 3 - Prevalence Index is ≤3.0 ¹			
2. Frangula alnus	20	Yes	FAC	4 - Morphological Adaptations ¹ (Provide supporting			
3. Rosa multiflora	18	Yes	FACU	data in Remarks or on a separate sheet)			
4 Solidago altissima	15	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)			
5 Impatiens capensis	5	No	FACW				
6 Parthenocissus quinquefolia	5	No	FACU	'Indicators of hydric soil and wetland hydrology must be present unless disturbed or problematic			
7 Taraxacum officinale	3	No	FACU	Definitions of Vegetation Strata:			
	2	No	FACU	Seminions of Vegetation official			
		110	1700	Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height			
3				diameter at breast height (DDH), regardless of height.			
11				Sapling/shrub – Woody plants less than 3 in. DBH			
10							
12	93	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.			
Woody Vine Stratum (Plot size: 30)							
Parthenocissus quinquefolia	5	Yes	FACU	woody vines – All woody vines greater than 3.28 ft in height.			
2. Taraxacum officinale	5	Yes	FACU				
3.				Hydrophytic			
4.				vegetation Present? Yes No X			
	10	=Total Cover					
Remarks: (Include photo numbers here or on a separ	ate sheet.)						
Historical AG field. Recent brush hogging, recovering	scrub-shrul	Э.					

Profile Desc	cription: (Describe	to the de	pth needed to docu	ument ti	he indica	ator or co	onfirm the absence o	f indicators.)
Depth	Matrix		Redo	x Featur	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12	10YR 2/1	96					Loamy/Clayey	
			7.5YR 4/4	3	С	PL		Prominent redox concentrations
			10YR 5/4	1	С	М		Distinct redox concentrations
12-16	10YR 3/1	50					Loamy/Clayey	
	10YR 2/1	45						
			10YR 4/6	5	С	М		Prominent redox concentrations
¹ Type: C=Co	oncentration, D=Depl	letion, RN	/I=Reduced Matrix, N	/IS=Mas	ked Sand	l Grains.	² Location: P	L=Pore Lining, M=Matrix.
Hydric Soil Histosol Histoc Ep Black Hi Hydroge Stratified Depleted Thick Da Sandy M Sandy C Sandy R Stripped Dark Sui ³ Indicators o Restrictive I Type: Depth (ii	Indicators: (A1) pipedon (A2) stic (A3) In Sulfide (A4) d Layers (A5) d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Sleyed Matrix (S4) Redox (S5) Matrix (S6) rface (S7) f hydrophytic vegetat Layer (if observed): mches):	e (A11) tion and v	Polyvalue Belo MLRA 149B Thin Dark Surf High Chroma S Loamy Mucky Loamy Gleyed Depleted Matri X Redox Dark Su Depleted Dark Redox Deprese Marl (F10) (LR	w Surfa) ace (S9) Sands (S Mineral Matrix (x (F3) urface (F Surface sions (F R K, L)	ce (S8) (I S11) (LRR R S11) (LRI (F1) (LRI (F2) 56) 56) 56) 58) resent, ur	LRR R, , MLRA 1 R K, L) R K, L)	Indicators fo 2 cm Mu Coast Pr 49B) 5 cm Mu Polyvalu Thin Dar Iron-Mar Piedmor Mesic Si Red Par Very Sha Other (E urbed or problematic.	nt? Yes X No
Remarks: This data for Version 7.0, Furrows pres	m is revised from No 2015 Errata. (http://w sent from historical A	orthcentra www.nrcs G land us	l and Northeast Reg .usda.gov/Internet/F se.	ional Su SE_DOC	Ipplemen CUMENT	t Version S/nrcs14	2.0 to include the NR(2p2_051293.docx)	CS Field Indicators of Hydric Soils,

Project/Site: Sagamore Soils - Avon Commerce Parkway	City/County: Avon/Lorain Sampling Date: 5/23/17
Applicant/Owner: Sagamore Companies	State: OH Sampling Point: SP-2
Investigator(s): R. Warren, L. Sayre; EnviroScience, Inc.	Section, Township, Range:
Landform (hillside, terrace, etc.): Depression	Local relief (concave, convex, none): Concave Slope %:
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.477782	Long: -82.044514 Datum: WGS 84
Soil Map Unit Name: Miner silty clay loam, 0 to 2 percent slopes	NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of y	rear? Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly	disturbed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrologynaturally pro	oblematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area

Hydric Soil Present?	Yes X	No	within a Wetland? Yes X No
Wetland Hydrology Present?	Yes X	No	If yes, optional Wetland Site ID: Wetland W-1b
Remarks: (Explain alternative proced	ures here or in a s	eparate report.)	

Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) X Surface Water (A1) Water-Stained Leaves (B9) Drainage Patterns (B10) X High Water Table (A2) Aquatic Fauna (B13) Moss Trim Lines (B16) X Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) X Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) X Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X Microtopographic Relief (D4)
XSurface Water (A1)Water-Stained Leaves (B9)Drainage Patterns (B10)XHigh Water Table (A2)Aquatic Fauna (B13)Moss Trim Lines (B16)XSaturation (A3)Marl Deposits (B15)Dry-Season Water Table (C2)Water Marks (B1)Hydrogen Sulfide Odor (C1)XCrayfish Burrows (C8)Sediment Deposits (B2)Oxidized Rhizospheres on Living Roots (C3)XSaturation Visible on Aerial Imagery (C9)Drift Deposits (B3)XPresence of Reduced Iron (C4)Stunted or Stressed Plants (D1)Algal Mat or Crust (B4)Recent Iron Reduction in Tilled Soils (C6)Geomorphic Position (D2)Iron Deposits (B5)Thin Muck Surface (C7)Shallow Aquitard (D3)Inundation Visible on Aerial Imagery (B7)Other (Explain in Remarks)X
X High Water Table (A2) Aquatic Fauna (B13) Moss Trim Lines (B16) X Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) X Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) X Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X Microtopographic Relief (D4)
X Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2) Water Marks (B1) Hydrogen Sulfide Odor (C1) X Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) X Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X Microtopographic Relief (D4)
Water Marks (B1) Hydrogen Sulfide Odor (C1) X Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) X Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X Microtopographic Relief (D4)
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) X Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X
Drift Deposits (B3) X Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X Microtopographic Relief (D4)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X Microtopographic Relief (D4)
Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X Microtopographic Relief (D4)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) X Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8) X FAC-Neutral Test (D5)
Field Observations:
Surface Water Present? Yes x No Depth (inches): 0
Water Table Present? Yes x No Depth (inches): 1
Saturation Present? Yes x No Depth (inches): 0 Wetland Hydrology Present? Yes X No
(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
Remarks:
Furrows present from historical AG.

Sampling Point: SP-2

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:2 (A)
3 4				Total Number of Dominant Species Across All Strata: <u>2</u> (B)
5 6				Percent of Dominant Species That Are OBL, FACW, or FAC:100.0% (A/B)
7				Prevalence Index worksheet:
	:	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species 25 x 1 = 25
1. Frangula alnus	5	Yes	FAC	FACW species 85 x 2 = 170
2				FAC species 10 x 3 = 30
3				FACU species <u>5</u> x 4 = <u>20</u>
4				UPL species 0 x 5 = 0
5.				Column Totals: 125 (A) 245 (B)
6.				Prevalence Index = B/A = 1.96
7.				Hydrophytic Vegetation Indicators:
	5	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1. Phragmites australis	65	Yes	FACW	X 3 - Prevalence Index is $≤3.0^1$
2. Poa palustris	15	No	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3. Juncus effusus	15	No	OBL	data in Remarks or on a separate sheet)
4. Carex hyalinolepis	10	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Galium aparine	5	No	FACU	¹ Indiastors of hydric call and watland hydrology must
6. Onoclea sensibilis	5	No	FACW	be present, unless disturbed or problematic.
7. Frangula alnus	5	No	FAC	Definitions of Vegetation Strata:
8. Carex sp.	2	No		Tree Weedy plants 2 in (7.6 cm) or more in
9.				diameter at breast height (DBH), regardless of height.
10.				Sanling/ohruh Woody plants loss than 2 in DPH
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				Horb All borbaccous (non woody) plants, regardless
	122	=Total Cover		of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: <u>30</u>) 1.				Woody vines – All woody vines greater than 3.28 ft in height.
2.				
3.				Hydrophytic Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	arate sheet)			

Color (moist)	%	Color (moiot)	x Featur	es			
10YR 2/1	70		%	Type ¹	loc^2	Texture	Remarks
	100			Type		Mucky Loam/Clay	romano
7.5YR 3/1	70	7.5YR 4/1	15	RM	м	Loamv/Clavev	
		7 5YR 5/6	15	C			Prominent redox concentrations
	45	7.5/10.4/4					
7.5YR 2.5/1	15	7.5YR 4/1	70	RM	M	Loamy/Clayey	
		7.5YR 5/6	15		M		Prominent redox concentrations
					—		
oncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Mas	ked Sand	d Grains.	² Location: P	L=Pore Lining, M=Matrix.
ndicators:						Indicators f	or Problematic Hydric Soils ³ :
(A1) iipedon (A2) stic (A3) n Sulfide (A4) I Layers (A5) I Below Dark Surface rk Surface (A12) ucky Mineral (S1) leyed Matrix (S4) edox (S5) Matrix (S6) face (S7)	e (A11)	Polyvalue Belo MLRA 149B Thin Dark Surf High Chroma S Loamy Mucky Loamy Gleyed Depleted Matri X Redox Dark Su Depleted Dark ? Redox Depress Marl (F10) (LR	w Surfa) ace (S9) Sands (S Mineral Matrix (x (F3) urface (F Surface sions (Fi R K, L)	ce (S8) (I) (LRR R S11) (LRI (F1) (LRI F2) 56) 56) 58)	LRR R, , MLRA ⁻ R K, L) R K, L)	149B) 2 cm Mu ? Coast Pi 9 dyvalu Thin Dat Iron-Mar Piedmor Mesic Si Red Par Very Sh Other (E	ick (A10) (LRR K, L, MLRA 149B) rairie Redox (A16) (LRR K, L, R) icky Peat or Peat (S3) (LRR K, L, R) ie Below Surface (S8) (LRR K, L) rk Surface (S9) (LRR K, L) nganese Masses (F12) (LRR K, L, R) nt Floodplain Soils (F19) (MLRA 149B) podic (TA6) (MLRA 144A, 145, 149B) rent Material (F21) allow Dark Surface (F22) Explain in Remarks)
ayer (if observed):		stand nydrology m					
nches):						Hydric Soil Prese	nt? Yes <u>X</u> No
m is revised from No 2015 Errata. (http://w atard (clay/till). Perch	rthcentral ww.nrcs.u ed water t	and Northeast Reg ısda.gov/Internet/F3 able.	ional Su SE_DOC	pplemen CUMENT	t Version S/nrcs14	a 2.0 to include the NR(l2p2_051293.docx)	CS Field Indicators of Hydric Soils,
	7.5YR 2.5/1	7.5YR 2.5/1 15	7.5YR 2.5/1 15 7.5YR 4/1 7.5YR 5/6 7.5YR 5/6	7.5YR 2.5/1 15 7.5YR 4/1 70 7.5YR 5/6 15 7.5YR 5/6 15 9 9 10 10 11 10 11 10 12 10 13 10 14 10 15 10 16 10<	7.5YR 2.5/1 15 7.5YR 5/6 15 C 1.5 1.5 C 1.5 1.5 C 1.5 1.5 C 1.5	7.5YR 2.5/1 15 7.5YR 4/1 70 RM M 7.5YR 5/6 15 C M	7.5YR 2.5/1 15 7.5YR 4/1 70 RM M Loamy/Clayey 7.5YR 5/6 15 C M

Project/Site: Sagamore Soils - Av	on Commerce Parkw	ay	City/County: Avon/Lorain		Samp	ling Date: 5/	/23/17
Applicant/Owner: Sagamore C	Companies			State:	OH San	npling Point:	SP-3
Investigator(s): R. Warren, L. Say	re; EnviroScience, Inc		Section, Townshi	p, Range:			
Landform (hillside, terrace, etc.):	Depression	Local	relief (concave, convex, nor	ne): <u>Concave</u>		Slope %	/o:
Subregion (LRR or MLRA): LRR	R, MLRA 139 Lat:	41.478299	Long: -82.0)43243		Datum: <u>N</u>	VGS 84
Soil Map Unit Name: Miner silty c	lay loam, 0 to 2 perce	nt slopes		VWI classifica	ation: <u>N/A</u>		
Are climatic / hydrologic conditions	on the site typical for	this time of year?	Yes X	No (II	f no, explain	ı in Remarks.))
Are Vegetation, Soil	, or Hydrology	significantly distur	bed? Are "Normal Ci	rcumstances"	present?	Yes <u>X</u> N	۰v
Are Vegetation, Soil	, or Hydrology	_naturally problema	tic? (If needed, exp	ain any answ	ers in Rema	arks.)	
SUMMARY OF FINDINGS	- Attach site map	o showing sam	pling point locations	, transects	s, importa	ant feature	es, etc.
Hydrophytic Vegetation Present?	Yes X	No	Is the Sampled Area				
Hydric Soil Present?	Yes X	No	within a Wetland?	Yes	X No		

Hydric Soil Present?	Yes X	No	within a Wetland? Yes X No
Wetland Hydrology Present?	Yes X	No	If yes, optional Wetland Site ID: Wetland W-2
Remarks: (Explain alternative procedur	es here or in a	separate report.)	

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)	
X Surface Water (A1)	Drainage Patterns (B10)	
X High Water Table (A2)	Moss Trim Lines (B16)	
X Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	X Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C3) X Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6)	X Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)	X FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes X	No Depth (inches):5	
Water Table Present? Yes X	No Depth (inches): 0	
Saturation Present? Yes X	No Depth (inches):0 Wetl	and Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches):0 Wetl	and Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No if available:
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No Depth (inches):0 Wetl	and Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mor Remarks:	No Depth (inches):0 Wetl Wetl No Wetl No Wetl No	and Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No if available:
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No if available:
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mor Remarks: Furrows present from historical AG	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No if available:
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mor Remarks: Furrows present from historical AG	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No if available:
Saturation Present? Yes X (includes capillary fringe) Describe Recorded Data (stream gauge, mor Remarks: Furrows present from historical AG	No Depth (inches):0 Wetl nitoring well, aerial photos, previous inspections),	and Hydrology Present? Yes X No if available:

Sampling Point: SP-3

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:2 (A)
3				Total Number of Dominant Species Across All Strata: 2 (B)
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)		_		OBL species 75 x 1 = 75
1. <u> </u>				FACW species $0 x 2 = 0$
2.				FAC species 10 x 3 = 30
3.				FACU species $15 \times 4 = 60$
4.				UPL species $3 \times 5 = 15$
5				Column Totals: 103 (A) 180 (B)
6				$\frac{1}{2} = \frac{1}{2} = \frac{1}$
7				Hydrophytic Vegetation Indicators:
···		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1 Juncus effusus	50	Yes	OBI	X_{3} - Prevalence Index is <3.0 ¹
2 Carex hvalinolenis	25	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3 Solidado altissima	15	<u> </u>	FACU	data in Remarks or on a separate sheet)
4 Solanum dulcamara	8	No	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
5 Asclenias suriaca	3	No		
6 Rumey crispus		No		¹ Indicators of hydric soil and wetland hydrology must
7 Carex sn	2	No		Definitions of Vegetation Strata:
8		110		Deminions of Vegetation offata.
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	105	=Total Cover		of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: Jun)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Profile Desc	cription: (Describe	to the de	pth needed to doc	ument tl	ne indica	ator or c	onfirm the absence o	f indicators.)
Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Туре	Loc ²	Texture	Remarks
0-10	7.5YR 2.5/1	98	7.5YR 4/6	2	С	М	Loamy/Clayey	Prominent redox concentrations
10-13	7.5YR 5/1	70	7.5YR 4/6	15	С	М	Loamy/Clayey	Prominent redox concentrations
	7.5YR 3/1	15						
	oncontration D-Don	lotion PM		/S-Mac	kod San	Graine	² Location:	
Hydric Soil	Indicators:			10-11/103		i Orains.	Indicators f	or Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	2 cm Mu	uck (A10) (LRR K, L, MLRA 149B)
Histic Ep	pipedon (A2)		MLRA 149B	5)			? Coast P	rairie Redox (A16) (LRR K, L, R)
Black Hi	istic (A3)		Thin Dark Surf	ace (S9)) (LRR R	, MLRA	149B) 5 cm Mu	ucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	en Sulfide (A4)		High Chroma	Sands (S	511) (LRI	R K, L)	Polyvalu	ue Below Surface (S8) (LRR K, L)
Stratified	d Layers (A5)		Loamy Mucky	Mineral	(F1) (LR	R K, L)	Thin Da	rk Surface (S9) (LRR K, L)
<u>?</u> Depleted	d Below Dark Surface	e (A11)	Loamy Gleyed	Matrix (F2)		Iron-Mai	nganese Masses (F12) (LRR K, L, R)
Sandy M	ark Surface (A12)		Depieted Matri	IX (F3) urfaco (E	6)		Pleamoi Mosic S	nt Floodplain Solis (F 19) (MLRA 1498)
Sandy R	Sleved Matrix (S4)		Depleted Dark	Surface	(F7)		Nesic 3	rent Material (F21)
Sandy R	Redox (S5)		Redox Depres	sions (F	() B)		Verv Sh	allow Dark Surface (F22)
Stripped	I Matrix (S6)		 Marl (F10) (LR	RK,L)	- /		Other (E	Explain in Remarks)
Dark Su	rface (S7)							
³ Indicators o	f hydrophytic vegetat	ion and w	etland hydrology m	ust be pr	resent, ui	nless dist	turbed or problematic.	
Restrictive	Layer (if observed):							
Type.	nahaa);						Undria Sail Draaa	mt2 Vac V Na
Depth (ii							Hydric Soli Prese	
Remarks:	m is revised from No	rthcontrol	and Northoast Pog	ional Su	nnlomon	t Vorsion	2.0 to include the NP	CS Field Indicators of Hydric Soils
Version 7.0,	2015 Errata. (http://w	ww.nrcs.	usda.gov/Internet/F	SE DOC	CUMENT	S/nrcs14	2p2 051293.docx)	
Shallow aqu	atard (clay/till). Perch	ed water	table.	_			,	

Project/Site: Sagamore Soils - Avon Comme	erce Parkway	Parkway City/County: Avon/Lorain S				
Applicant/Owner: Sagamore Companies	i	State: OH	Sampling Point: 4			
Investigator(s): R. Warren, L. Sayre; EnviroS						
Landform (hillside, terrace, etc.): depressio	ndform (hillside, terrace, etc.): depression Local relief (concave, convex, none): concave					
Subregion (LRR or MLRA): LRR R, MLRA 1	139 Lat: <u>41.476978</u>	Long:82.042514	Datum: WGS 84			
Soil Map Unit Name: Miner silty clay loam, 0 to 2 percent slopes NWI classification: none						
Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (If no, explain in Remarks.)						
Are Vegetation, Soil, or Hydro	blogysignificantly distu	urbed? Are "Normal Circumstances" pres	ent? Yes X No			
Are Vegetation, Soil, or Hydro	ologynaturally problem	natic? (If needed, explain any answers in	n Remarks.)			
SUMMARY OF FINDINGS – Attach	site map showing sar	npling point locations, transects, in	nportant features, etc.			
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area				
Hydric Soil Present?	Yes X No	within a Wetland? Yes X	No			
Wetland Hydrology Present?	Yes X No	If yes, optional Wetland Site ID: Wetland	1 W-3			
Remarks: (Explain alternative procedures he PEM Wetland	əre or in a separate report.)					

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)		
Surface Water (A1)	Drainage Patterns (B10)		
X High Water Table (A2)	Moss Trim Lines (B16)		
X Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	s (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)		X Shallow Aquitard (D3)
X Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	3)		X FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes	No X Depth (inches):		
Water Table Present? Yes X	No Depth (inches): 9		
Saturation Present? Yes X	No Depth (inches): 6	Wetlan	d Hydrology Present? Yes X No
(includes capillary fringe)			
Describe Recorded Data (stream gauge, mor	itoring well, aerial photos, previous inspe	ctions), if a	available:
Remarks:			

Sampling Point: 4

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:2 (A)
3				Total Number of Dominant Species Across All Strata: <u>2</u> (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC:100.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species x 1 =
1.				FACW species x 2 =
2.				FAC species x 3 =
3.				FACU species x 4 =
4.				UPL species x 5 =
5.				Column Totals: (A) (B)
6.				Prevalence Index = B/A =
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Phragmites australis	35	Yes	FACW	3 - Prevalence Index is ≤3.0 ¹
2. Carex scoparia	20	Yes	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3. Panicum virgatum	15	No	FAC	data in Remarks or on a separate sheet)
4. Penthorum sedoides	7	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Rubus allegheniensis	5	No	FACU	¹ Indicators of hydric coil and watland hydrology must
6. Lycopus virginicus	5	No	OBL	be present, unless disturbed or problematic.
7. Equisetum arvense	5	No	FAC	Definitions of Vegetation Strata:
8. Dichanthelium clandestinum	5	No	FACW	Trop Woody plants 3 in (7.6 cm) or more in
9. Erigeron strigosus	3	No	FACU	diameter at breast height (DBH), regardless of height.
10.				Sanling/shruh – Woody plants less than 3 in DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12	100			Herb – All herbaceous (non-woody) plants, regardless
Woody Vine Stratum (Plot size: 15')				
1				Woody vines – All woody vines greater than 3.28 ft in height.
2				Hudron hutio
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Profile Descr	ription: (Describe	to the d	epth needed to docu	ument t	he indica	tor or co	onfirm the absence	of indicators.)
Depth	Matrix		Redo	x Featu	res			
(inches)	Color (moist)	%	Color (moist)	%	Type'	Loc ²	Texture	Remarks
0-10	N 2.5/	95	7.5YR 4/6	5	С	PL	Loamy/Clayey	Prominent redox concentrations
					_			
¹ Type: C=Col	ncentration D=Dep	etion R	M=Reduced Matrix	IS=Mas	ked Sand	Grains	² l ocation:	PI =Pore Lining M=Matrix
Hydric Soil Ir	ndicators:	otion, rt					Indicators	for Problematic Hydric Soils ³ :
Histosol (A1)		Polyvalue Belo	w Surfa	ce (S8) (I	RR R.	2 cm M	luck (A10) (LRR K, L, MLRA 149B)
Histic Epi	pedon (A2)		 MLRA 149B)	(- / (,	? Coast F	Prairie Redox (A16) (LRR K, L, R)
Black His	tic (A3)		Thin Dark Surf	, ace (S9) (LRR R	MLRA 1	149B) 5 cm M	ucky Peat or Peat (S3) (LRR K. L. R)
Hvdrogen	Sulfide (A4)		High Chroma S	Sands (S	, , 511) (LRF	R K. L)	Polvval	ue Below Surface (S8) (LRR K. L)
Stratified	Lavers (A5)		Loamv Muckv	Mineral	(F1) (LR	κ. L)	 Thin Da	ark Surface (S9) (LRR K. L)
Depleted	Below Dark Surface	e (A11)	Loamv Gleved	Matrix ((F2)	, ,	Iron-Ma	anganese Masses (F12) (LRR K. L. R)
 Thick Dar	k Surface (A12)	· /	Depleted Matri	x (F3)	,		Piedmo	ont Floodplain Soils (F19) (MLRA 149B)
Sandy Mu	uckv Mineral (S1)		X Redox Dark Su	Irface (F	-6)		Mesic S	Spodic (TA6) (MLRA 144A. 145. 149B)
Sandy Gl	eved Matrix (S4)		Depleted Dark	Surface	, (F7)		 Red Pa	irent Material (F21)
Sandy Re	edox (S5)		? Redox Depress	sions (F	8)		Very St	nallow Dark Surface (F22)
Stripped I	Matrix (S6)		 Marl (F10) (LR	R K, L)	,		Other (Explain in Remarks)
Dark Surf	ace (S7)		(),(, ,			(, ,
³ Indicators of	hydrophytic vegetat	ion and	wetland hydrology mu	ist be p	resent, ur	nless dist	urbed or problematic.	
Restrictive L	ayer (if observed):							
Туре:	Rock	Fill						
Depth (inc	ches):	10					Hydric Soil Prese	ent? Yes <u>X</u> NO
Remarks: This data forn Version 7.0, 2	n is revised from No 2015 Errata. (http://w	rthcentra ww.nrcs	al and Northeast Reg s.usda.gov/Internet/FS	ional Su SE_DOO	ipplement CUMENT	t Version S/nrcs14	2.0 to include the NF 2p2_051293.docx)	RCS Field Indicators of Hydric Soils,

Project/Site: Sagamore Soils - Avon Commerce Parkway	City/County: Avon/Lorain Sampling Date: 5/23/17
Applicant/Owner: Sagamore Companies	State: OH Sampling Point: 5
Investigator(s): R. Warren, L. Sayre; EnviroScience, Inc.	Section, Township, Range:
Landform (hillside, terrace, etc.): terrace Loca	al relief (concave, convex, none): none Slope %: 0
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.476863	Long: -82.042586 Datum: WGS 84
Soil Map Unit Name: Miner silty clay loam, 0 to 2 percent slopes	NWI classification: none
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly distu	urbed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrologynaturally problem	natic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sar	mpling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No X	Is the Sampled Area within a Wetland? Yes No X If yes, optional Wetland Site ID:
Hydric Soil Present?	Yes	No X	
Wetland Hydrology Present?	Yes	No X	
Remarks: (Explain alternative procedu Open Field	ıres here or in a	separate report.)	

Wetland Hydrology Indicators:					Secondary Indicators (mir	nimum of two required)
Primary Indicators (minimur	<u>m of one is requir</u>		Surface Soil Cracks (B6)			
Surface Water (A1)		Drainage Patterns (B10)				
High Water Table (A2)		Moss Trim Lines (B16	3)			
Saturation (A3)		Marl De	eposits (B15)		Dry-Season Water Ta	able (C2)
Water Marks (B1)		Hydrog	en Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidize	ed Rhizospheres on Living R	oots (C3)	Saturation Visible on	Aerial Imagery (C9)
Drift Deposits (B3)		Presen	ce of Reduced Iron (C4)		Stunted or Stressed F	Plants (D1)
Algal Mat or Crust (B4)		Recent	Iron Reduction in Tilled Soil	s (C6)	Geomorphic Position	(D2)
Iron Deposits (B5)		Thin M	uck Surface (C7)		? Shallow Aquitard (D3))
Inundation Visible on A	erial Imagery (B7) Other (Explain in Remarks)		Microtopographic Rel	ief (D4)
Sparsely Vegetated Co	ncave Surface (E	38)			FAC-Neutral Test (D5	5)
Field Observations:						
Surface Water Present?	Yes	No X	Depth (inches):			
Water Table Present?	Yes	No X	Depth (inches):			
Saturation Present?	Yes	No X	Depth (inches):	Wetlar	nd Hydrology Present?	Yes No X
(includes capillary fringe)			,			
Describe Recorded Data (st	tream gauge, mo	nitoring well,	aerial photos, previous inspe	ections), if	available:	
, , , , , , , , , , , , , , , , , , ,	0 0 1	U		,.		
Remarks:						

Sampling Point:

5

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:0 (A)
3. 4.				Total Number of Dominant Species Across All Strata: <u>1</u> (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species <u>3</u> x 1 = <u>3</u>
1				FACW species 5 x 2 = 10
2.				FAC species 2 x 3 = 6
3.				FACU species 88 x 4 = 352
4.				UPL species 0 x 5 = 0
5.				Column Totals: 98 (A) 371 (B)
6.				Prevalence Index = B/A = 3.79
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				2 - Dominance Test is >50%
1. Schedonorus arundinaceus	60	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Rosa multiflora	10	No	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Rubus allegheniensis	10	No	FACU	data in Remarks or on a separate sheet)
4. Erigeron strigosus	5	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Dichanthelium clandestinum	5	No	FACW	¹ Indiastors of hydric soil and watland hydrology must
6. Potentilla simplex	3	No	FACU	be present, unless disturbed or problematic.
7. Juncus effusus	3	No	OBL	Definitions of Vegetation Strata:
8. Apocynum cannabinum	2	No	FAC	Tree Woody plants 2 in (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12	98	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 15') 1.				Woody vines – All woody vines greater than 3.28 ft in height.
2.				
3.				Hydrophytic Vegetation
4.				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

Profile Desc	ription: (Describe	to the de	pth needed to docu	ument t	he indica	tor or co	onfirm the absence of indi	cators.)
Depth	Matrix		Redo	x Featu	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-10	N 2.5/	100					Loamv/Clavev	
					·			· · · · · · · · · · · · · · · · · · ·
					·			
					· <u> </u>			
					. <u> </u>			
·					·			
	ncentration D=Depl	etion RM		IS=Mas	ked Sand	Grains	² l ocation: Pl =Po	re Lining M=Matrix
Hydric Soil I	ndicators:			10-1443		oranis.	Indicators for Pro	blematic Hydric Soils ³
Histosol	(A1)		Polyvalue Belo	w Surfa	ice (S8) (I	RR R	2 cm Muck (A	10) (I RR K I MI RA 149B)
Histic Ep	ipedon (A2)		NI RA 149B)		,	Coast Prairie	Redox (A16) (I RR K I R)
Black His	tic (A3)		Thin Dark Surf	, ace (S9		MI RA 1	(49B) 5 cm Mucky P	reat or Peat (S3) (IRR K I R)
Hydroger	n Sulfide (A4)		High Chroma S	Sands (S	511) (I RF	RKI)	Polyvalue Bel	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
Stratified	Lavers (A5)		Loamy Mucky	Mineral	(F1) (I R F	RKI)	Thin Dark Sur	face (S9) (I RR K I)
 Depleted	Below Dark Surface	e (A11)	Loamy Gleved	Matrix ((F2)	, _/	Iron-Mangane	se Masses (F12) (LRR K. L. R)
Thick Da	rk Surface (A12)	()	Depleted Matri	x (F3)	(• =)		Piedmont Flor	odplain Soils (F19) (MLRA 149B)
Sandy M	uckv Mineral (S1)		Redox Dark Su	urface (F	=6)		Mesic Spodic	(TA6) (MLRA 144A. 145. 149B)
Sandy G	eved Matrix (S4)		Depleted Dark	Surface	e (F7)		Red Parent M	aterial (F21)
Sandy Re	edox (S5)		Redox Depress	sions (F	8)		Verv Shallow	Dark Surface (F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K. L)	-,		Other (Explain	in Remarks)
Dark Sur	face (S7)			, _,				,
	()							
³ Indicators of	hydrophytic vegetat	ion and w	etland hydrology mu	ist be p	resent, ur	less dist	urbed or problematic.	
Restrictive L	ayer (if observed):						· ·	
Type:	Rock	Fill						
Denth (in	ches).	10					Hydric Soil Present?	Yes No X
Doput (iii		10						
Remarks:	n in raviand from No	rthoontrol	and Northagat Pag	ional Su	Innlomon	Varaian	2.0 to include the NPCS Fi	ald Indicators of Hydric Soils
Version 7.0	2015 Frrata (http://w	ww nrcs	usda gov/Internet/FS	SF DO		S/nrcs14	2.0 10 Include the NRCS Fit	ela malcalors of Hydric Solis,
							_poooo.a.o,	

Appendix D:

Ohio Rapid Assessment Method for

Wetlands v. 5.0 Rating Forms

Background Information

Name:		
	Reiss	Warren

Date: 5/23/2017

Affiliation: EnviroScience, Inc.

Address: 5070 Stow Road, Stow, Ohio 44224

Phone Number: 330-688-0111 ext. 262

e-mail address: RWarren@EnviroScienceInc.com

Name of Wetland: Wetland W-1 (W-1a, W-1b, W-1c, W-1d)

Vegetation Communit(ies): PEM

HGM Class(es): Depressional

Location of Wetland: include map, address, north arrow, landmarks, distances, roads, etc.

Please see attached.

Lat/Long or UTM Coordinate 41.478270	81.04513
USGS Quad Name	Avon
County	Lorain
Township	Avon
Section and Subsection	
Hydrologic Unit Code	#04110001
Site Visit	05/23/2017
National Wetland Inventory Map	X
Ohio Wetland Inventory Map	
Soil Survey	Х
Delineation report/map	Х

Name of Wetland: Wetland W-1 (W-1a, W-1b, W-1c, W-1d)		
Wetland Size (acres, hectares): 1 182 acres		
Sketch: Include north arrow, relationship with other surface waters, vegetation zon	es, etc.	
Wetland Size (acres, nectares): <u>1.182 acres</u> Sketch: Include north arrow, relationship with other surface waters, vegetation zon Please see attached.	es, etc.	
Comments, Narrative Discussion, Justification of Category Changes:		
Final score : 31.5	Category:	1 or 2 gray zone

Scoring Boundary Worksheet

INSTRUCTIONS. The initial step in completing the ORAM is to identify the "scoring boundaries" of the wetland being rated. In many instances this determination will be relatively easy and the scoring boundaries will coincide with the "jurisdictional boundaries." For example, the scoring boundary of an isolated cattail marsh located in the middle of a farm field will likely be the same as that wetland's jurisdictional boundaries. In other instances, however, the scoring boundary will not be as easily determined. Wetlands that are small or isolated from other surface waters often form large contiguous areas or heterogeneous complexes of wetland and upland. In separating wetlands for scoring purposes, the hydrologic regime of the wetland is the main criterion that should be used. Boundaries between contiguous or connected wetlands should be established where the volume, flow, or velocity of water moving through the wetland changes significantly. Areas with a high degree of hydrologic interaction should be scored as a single wetland. In determining a wetland's scoring boundaries, use the guidelines in the ORAM Manual Section 5.0. In certain instances, it may be difficult to establish the scoring boundary for the wetland being rated. These problem situations include wetlands that form a patchwork on the landscape, wetlands divided by artificial boundaries like property fences, roads, or railroad embankments, wetlands that are contiguous with streams, lakes, or rivers, and estuarine or coastal wetlands. These situations are discussed below, however, it is recommended that Rater contact Ohio EPA, Division of Surface Water, 401/Wetlands Section if there are additional questions or a need for further clarification of the appropriate scoring boundaries of a particular wetland.

#	Steps in properly establishing scoring boundaries	done?	not applicable
Step 1	Identify the wetland area of interest. This may be the site of a proposed impact, a reference site, conservation site, etc.	х	
Step 2	Identify the locations where there is physical evidence that hydrology changes rapidly. Such evidence includes both natural and human- induced changes including, constrictions caused by berms or dikes, points where the water velocity changes rapidly at rapids or falls, points where significant inflows occur at the confluence of rivers, or other factors that may restrict hydrologic interaction between the wetlands or parts of a single wetland.	Х	
Step 3	Delineate the boundary of the wetland to be rated such that all areas of interest that are contiguous to and within the areas where the hydrology does not change significantly, i.e. areas that have a high degree of hydrologic interaction are included within the scoring boundary.	х	
Step 4	Determine if artificial boundaries, such as property lines, state lines, roads, railroad embankments, etc., are present. These should not be used to establish scoring boundaries unless they coincide with areas where the hydrologic regime changes.	х	
Step 5	In all instances, the Rater may enlarge the minimum scoring boundaries discussed here to score together wetlands that could be scored separately.		N/A
Step 6	Consult ORAM Manual Section 5.0 for how to establish scoring boundaries for wetlands that form a patchwork on the landscape, divided by artificial boundaries, contiguous to streams, lakes or rivers, or for dual classifications.		N/A

End of Scoring Boundary Determination. Begin Narrative Rating on next page.

Narrative Rating

INSTRUCTIONS. Answer each of the following questions. Questions 1, 2, 3 and 4 should be answered based on information obtained from the site visit or the literature *and* by submitting a Data Services Request to the Ohio Department of Natural Resources, Division of Natural Areas and Preserves, Natural Heritage Data Services, 1889 Fountain Square Court, Building F-1, Columbus, Ohio 43224, 614-265-6453 (phone), 614-265-3096 (fax), <u>http://www.dnr.state.oh.us/dnap</u>. The remaining questions are designed to be answered primarily by the results of the site visit. Refer to the User's Manual for descriptions of these wetland types. Note: "Critical habitat" is legally defined in the Endangered Species Act and is the geographic area containing physical or biological features essential to the conservation of a listed species or as an area that may require special management considerations or protection. The Rater should contact the Region 3 Headquarters or the Columbus Ecological Services Office for updates as to whether critical habitat has been designated for other federally listed threatened or endangered species. "Documented" means the wetland is listed in the appropriate State of Ohio database.

#	Question	Circle one	
1	Critical Habitat Is the watland in a township section or subsection of	VES	
	a United States Geological Survey 7.5 minute Quadrandle that has		
	been designated by the U.S. Fish and Wildlife Service as "critical	Wetland should be	Go to Question 2
	habitat" for any threatened or endangered plant or animal species?	evaluated for possible	
	Note: as of January 1, 2001, of the federally listed endangered or	Category 3 status	
	had critical babitat designated (50 CER 17 95(a)) and the piping ployer	Go to Question 2	
	has had critical habitat proposed (65 FR 41812 July 6, 2000).		
2	Threatened or Endangered Species. Is the wetland known to contain	YES	(NO)
	an individual of, or documented occurrences of federal or state-listed	Matter dia 2 October	
	threatened or endangered plant or animal species?	3 wetland is a Category	Go to Question 3
		o wettand.	
		Go to Question 3	
3	Documented High Quality Wetland. Is the wetland on record in	YES	$ $ \square
	Natural mentage Database as a high quality wetland?	Wetland is a Category	Go to Question 4
		3 wetland	
		Co to Ourstian A	
4	Significant Breeding or Concentration Area Does the wetland	Go to Question 4	
-	contain documented regionally significant breeding or nonbreeding	125	
	waterfowl, neotropical songbird, or shorebird concentration areas?	Wetland is a Category	Go to Question 5
		3 wetland	
		Go to Question 5	
5	Category 1 Wetlands. Is the wetland less than 0.5 hectares (1 acre)	YES	(NO)
	in size and hydrologically isolated and either 1) comprised of		
	vegetation that is dominated (greater than eighty per cent areal cover)	Wetland is a Category	Go to Question 6
	2) an acidic pond created or excavated on mined lands that has little or		
	no vegetation?	Go to Question 6	
6	Bogs. Is the wetland a peat-accumulating wetland that 1) has no	YES	NO
	significant inflows or outflows, 2) supports acidophilic mosses,	Wetland is a Category	Go to Question 7
	cover, 4) at least one species from Table 1 is present, and 5) the	3 wetland	
	cover of invasive species (see Table 1) is <25%?		
-7	Fana le the watland a carbon accumulating (next much) watland that	Go to Question 7	
<u> </u>	is saturated during most of the year, primarily by a discharge of free	160	
	flowing, mineral rich, ground water with a circumneutral ph (5.5-9.0)	Wetland is a Category	Go to Question 8a
	and with one or more plant species listed in Table 1 and the cover of	3 wetland	
	invasive species listed in Table 1 is <25%?	Go to Question 8a	
8a	"Old Growth Forest." Is the wetland a forested wetland and is the	YES	(NO)
	forest characterized by, but not limited to, the following characteristics:		
	overstory canopy trees of great age (exceeding at least 50% of a	Wetland is a Category	Go to Question 8b
	projected maximum attainable age for a species); little or no evidence	3 wetland.	
	years; an all-aged structure and multilayered canopies: adaredations of	Go to Question 8b	
	canopy trees interspersed with canopy gaps; and significant numbers		
	of standing dead snags and downed logs?		

8b	Mature forested wetlands. Is the wetland a forested wetland with	YES	\mathbb{N}
	deciduous trees with large diameters at breast height (dbh), generally diameters greater than 45cm (17.7in) dbh?	Wetland should be evaluated for possible Category 3 status.	Go to Question 9a
		Go to Question 9a	
9a	Lake Erie coastal and tributary wetlands. Is the wetland located at	YES	NO
	an elevation less than 575 feet on the USGS map, adjacent to this elevation, or along a tributary to Lake Erie that is accessible to fish?	Go to Question 9b	Go to Question 10
9b	Does the wetland's hydrology result from measures designed to	YES	NO
	prevent erosion and the loss of aquatic plants, i.e. the wetland is partially hydrologically restricted from Lake Erie due to lakeward or landward dikes or other hydrological controls?	Wetland should be evaluated for possible Category 3 status	Go to Question 9c
		Go to Question 10	
9c	Are Lake Erie water levels the wetland's primary hydrological influence,	YES	NO
	I.e. the wetland is hydrologically unrestricted (no lakeward or upland border alterations), or the wetland can be characterized as an "estuarine" wetland with lake and river influenced hydrology. These include sandbar deposition wetlands, estuarine wetlands, river mouth wetlands, or those dominated by submersed aquatic vecetation.	Go to Question 9d	Go to Question 10
9d	Does the wetland have a predominance of native species within its	YES	NO
	vegetation communities, although non-native or disturbance tolerant native species can also be present?	Wetland is a Category 3 wetland	Go to Question 9e
		Go to Question 10	
9e	Does the wetland have a predominance of non-native or disturbance	YES	NO
	tolerant native plant species within its vegetation communities?	Wetland should be evaluated for possible Category 3 status	Go to Question 10
10	Lake Plain Sand Prairies (Oak Openings) Is the wetland located in	YES	NO
	Lucas, Fulton, Henry, or Wood Counties and can the wetland be characterized by the following description: the wetland has a sandy substrate with interspersed organic matter, a water table often within several inches of the surface, and often with a dominance of the gramineous vegetation listed in Table 1 (woody species may also be present). The Ohio Department of Natural Resources Division of Natural Areas and Preserves can provide assistance in confirming this	Wetland is a Category 3 wetland. Go to Question 11	Go to Question 11
11	type or wetland and its quality. Relict Wet Prairies Is the wetland a relict wet prairie community	YES	KO
	dominated by some or all of the species in Table 1. Extensive prairies were formerly located in the Darby Plains (Madison and Union Counties), Sandusky Plains (Wyandot, Crawford, and Marion Counties), northwest Ohio (e.g. Erie, Huron, Lucas, Wood Counties), and portions of western Ohio Counties (e.g. Darke, Mercer, Miami, Montgomery, Van Wert etc.).	Wetland should be evaluated for possible Category 3 status Complete Quantitative Rating	Complete Quantitative Rating

Table 1. Characteristic plant species.	
--	--

invasive/exotic spp	fen species	bog species	0ak Opening species	wet prairie species
Lythrum salicaria	Zygadenus elegans var. glaucus	Calla palustris	Carex cryptolepis	Calamagrostis canadensis
Myriophyllum spicatum	Cacalia plantaginea	Carex atlantica var. capillacea	Carex lasiocarpa	Calamogrostis stricta
Najas minor	Carex flava	Carex echinata	Carex stricta	Carex atherodes
Phalaris arundinacea	Carex sterilis	Carex oligosperma	Cladium mariscoides	Carex buxbaumii
Phragmites australis	Carex stricta	Carex trisperma	Calamagrostis stricta	Carex pellita
Potamogeton crispus	Deschampsia caespitosa	Chamaedaphne calyculata	Calamagrostis canadensis	Carex sartwellii
Ranunculus ficaria	Eleocharis rostellata	Decodon verticillatus	Quercus palustris	Gentiana andrewsii
Rhamnus frangula	Eriophorum viridicarinatum	Eriophorum virginicum		Helianthus grosseserratus
Typha angustifolia	Gentianopsis spp.	Larix laricina		Liatris spicata
Typha xglauca	Lobelia kalmii	Nemopanthus mucronatus		Lysimachia quadriflora
	Parnassia glauca	Schechzeria palustris		Lythrum alatum
	Potentilla fruticosa	Sphagnum spp.		Pycnanthemum virginianum
	Rhamnus alnifolia	Vaccinium macrocarpon		Silphium terebinthinaceum
	Rhynchospora capillacea	Vaccinium corymbosum		Sorghastrum nutans
	Salix candida	Vaccinium oxycoccos		Spartina pectinata
	Salix myricoides	Woodwardia virginica		Solidago riddellii
	Salix serissima	Xyris difformis		
	Solidago ohioensis			
	Tofieldia glutinosa			
	Triglochin maritimum			
	Triglochin palustre			

End of Narrative Rating. Begin Quantitative Rating on next page.

Site:	Wetlan	d W- <mark>1 (</mark> a	a,b,c,d)	Rater(s): R. Warren		0
s	30.5 ubtotal first pag	e				
0	30.5	Metric	5. Special Wetland	ds.		
max 10 pts.	subtotal	Check all th	nat apply and score as indicated.			
			Bog (10)			
			Fen (10)			
			Old growth forest (10)			
			Mature forested wetland (5)			
			Lake Erie coastal/tributary wetland	d -unrestricted hydrology (10)		
			Lake Erie coastal/tributary wetland	d-restricted hydrology (5)		
			Lake Plain Sand Prairies (Oak Op	penings) (10)		
			Relict Wet Prairies (10)			
			Known occurrence state/federal th	nreatened or endangered species (10)		
			Significant migratory songbird/wat	ter fowl habitat or usage (10)		
			Category 1 Wetland. See Question	on 1 Qualitative Rating (-10)		
1	31 5	Metric	6. Plant communit	ties, interspersion, mi	icrotopoar	aphy.
max 20 pts.	subtotal	6a. Wetlan	d Vegetation Communities.	Vegatation Community Cov	er Scale	
		Score all pr	esent using 0 to 3 scale.	0	Absent or comp	orises <0.1ha (0.2471 acres) contiguous area
			Aquatic bed	1	of moderate qua	ner comprises small part of wetland's vegetation and is ality, or comprises a significant part but is of low qualit
		1	Emergent			
		0	Shrub	2	Present and eit and is of moder	her comprises significant part of wetland's vegetation ate quality, or comprises a small part and is of high
			Forest		quality.	
			Mudflats	3	Present and con vegetation and	mprises significant part, or more, of wetland's is of high quality
			Open Water		9	
			Other			
		6b. Horizor	ntal (plan view) Interspersion.	Narrative Description of Veg	getation Quality	• • • • • • • • • • • • • • • • • • •
		Score only	High (E)	low	tolerant native s	ty and/or predominance of nonnative or disturbance
			Mederately high (4)	mod	Native spp are	dominant component of the vegetation, although
			Mederately high (4)		nonnative and/o	or disturbance tolerant native spp can also be present,
			Mederate (3)		presence of rare	e, threatened, or endangered spp
		v		high	A predominanc	e of native species, with nonnative spp and/or
			Low (1)	· ·	disturbance tole	erant native spp absent or virtually absent, and high
		6c. Covera	ige of invasive plants. Refer to		threatened, or e	endangered spp
		Table 1 OR	AM long form for list. Add or	Mudflat and Open Water Cla	ass Quality	
		deduct poin	its for coverage.	0	Absent <0.1ha	(0.247 acres)
			Extensive >75% cover (-5)	1	Low 0.1 to <1ha	a (0.247 to 2.47 acres)
		X	Moderate 25-75% cover (-3)	2	Moderate 1 to <	4ha (2.47 to 9.88 acres)
			Sparse 5-25% cover (-1)	3	High 4ha (9.88	acres) or more
			Nearly absent <5% cover (0)	Microtopography Cover Sca	ale	
		6d Mirror	Absent (1)	0	Absent	
		Score all pr	pography. esent using 0 to 3 scale.	1	Present in very	small amounts or if more common of marginal quality
		1	Vegetated hummucks/tussucks		Precent in mod	arate amounts, but not of highest quality or is small
		0	Coarse woody debris >15cm (6in)	2	amounts of high	erate amounts, but not of nignest quality of in small nest quality
		0	Standing dead >25cm (10in) dbh			
		1	Amphibian breeding pools	3	Present in mode	erate or greater amounts and of highest quality

31.5 GRAND TOTAL (max 100 pts)

Refer to the most recent ORAM score calibration report for the scoring breakpoints between categories at the following address: http://epa.state.oh.us/dsw/401/401.html

ORAM	Summary	Worksheet
------	---------	-----------

		circle	
		answer or	
		insert	Result
		score	
Narrative Rating	Question 1 Critical Habitat	YES NO	If yes, Category 3.
	Question 2. Threatened or Endangered Species	YES NO	If yes, Category 3.
	Question 3. High Quality Natural Wetland	YES NO	If yes, Category 3.
	Question 4. Significant bird habitat	YES NO	If yes, Category 3.
	Question 5. Category 1 Wetlands	YES NO	If yes, Category 1.
	Question 6. Bogs	YES NO	If yes, Category 3.
	Question 7. Fens	YES NO	If yes, Category 3.
	Question 8a. Old Growth Forest	YES NO	If yes, Category 3.
	Question 8b. Mature Forested Wetland	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.
	Question 9b. Lake Erie Wetlands - Restricted	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.
	Question 9d. Lake Erie Wetlands – Unrestricted with native plants	YES NO	If yes, Category 3
	Question 9e. Lake Erie Wetlands - Unrestricted with invasive plants	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.
	Question 10. Oak Openings	YES NO	If yes, Category 3
	Question 11. Relict Wet Prairies	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.
Quantitative Rating	Metric 1. Size	2	
-	Metric 2. Buffers and surrounding land use	8	
	Metric 3. Hydrology	12	
	Metric 4. Habitat	8.5	
	Metric 5. Special Wetland Communities	0	
	Metric 6. Plant communities, interspersion, microtopography	1	
	TOTAL SCORE	31.5	Category based on score breakpoints 1 or 2 gray zone

Complete Wetland Categorization Worksheet.

Wetland Categorization Worksheet

Choices	Circle one		Evaluation of Categorization Result of ORAM
Did you answer "Yes" to any of the following questions: Narrative Rating Nos. 2, 3, 4, 6, 7, 8a, 9d, 10	YES Wetland is categorized as a Category 3 wetland	NO	Is quantitative rating score <i>less</i> than the Category 2 scoring threshold (<i>excluding</i> gray zone)? If yes, reevaluate the category of the wetland using the narrative criteria in OAC Rule 3745-1-54(C) and biological and/or functional assessments to determine if the wetland has been over-categorized by the ORAM
Did you answer "Yes" to any of the following questions: Narrative Rating Nos. 1, 8b, 9b, 9e, 11	YES Wetland should be evaluated for possible Category 3 status	NO	Evaluate the wetland using the 1) narrative criteria in OAC Rule 3745-1-54(C) and 2) the quantitative rating score. If the wetland is determined to be a Category 3 wetland using either of these, it should be categorized as a Category 3 wetland. Detailed biological and/or functional assessments may also be used to determine the wetland's category.
Did you answer "Yes" to Narrative Rating No. 5	YES Wetland is categorized as a Category 1 wetland	NO NO	Is quantitative rating score <i>greater</i> than the Category 2 scoring threshold <i>(including</i> any gray zone)? If yes, reevaluate the category of the wetland using the narrative criteria in OAC Rule 3745-1-54(C) and biological and/or functional assessments to determine if the wetland has been under-categorized by the ORAM
Does the quantitative score fall within the scoring range of a Category 1, 2, or 3 wetland?	YES Wetland is assigned to the appropriate category based on the scoring range		If the score of the wetland is located within the scoring range for a particular category, the wetland should be assigned to that category. In all instances however, the narrative criteria described in OAC Rule 3745-1-54(C) can be used to clarify or change a categorization based on a quantitative score.
Does the quantitative score fall with the <i>"gray zone"</i> for Category 1 or 2 or Category 2 or 3 wetlands?	Wetland is assigned to the higher of the two categories or assigned to a category based on detailed assessments and the narrative criteria	NO	Rater has the option of assigning the wetland to the higher of the two categories or to assign a category based on the results of a nonrapid wetland assessment method, e.g. functional assessment, biological assessment, etc, and a consideration of the narrative criteria in OAC rule 3745-1- 54(C).
Does the wetland otherwise exhibit <i>moderate OR superior</i> hydrologic OR habitat, OR recreational functions AND the wetland was <i>not</i> categorized as a Category 2 wetland (in the case of moderate functions) or a Category 3 wetland (in the case of superior functions) by this method?	YES Wetland was undercategorized by this method. A written justification for recategorization should be provided on Background Information Form	Wetland is assigned to category as determined by the ORAM.	A wetland may be undercategorized using this method, but still exhibit one or more superior functions, e.g. a wetland's biotic communities may be degraded by human activities, but the wetland may still exhibit superior hydrologic functions because of its type, landscape position, size, local or regional significance, etc. In this circumstance, the narrative criteria in OAC Rule 3745-1-54(C)(2) and (3) are controlling, and the under-categorization should be corrected. A written justification with supporting reasons or information for this determination should be provided.

	Fir	nal Category	
Choose one	Category 1	(Category 2)	Category 3

End of Ohio Rapid Assessment Method for Wetlands.

Background Information

Name:	
	Reiss Warren

Date: 5/23/2017

Affiliation: EnviroScience, Inc.

Address: 5070 Stow Road, Stow, Ohio 44224

Phone Number: 330-688-0111 ext. 262

e-mail address: RWarren@EnviroScienceInc.com

Name of Wetland: Wetland W-2

Vegetation Communit(ies): PEM

HGM Class(es): Depressional

Location of Wetland: include map, address, north arrow, landmarks, distances, roads, etc.

Please see attached.

Lat/Long or UTM Coordinate 4	1.478277,	-81.043239
USGS Quad Name		Avon
County		Lorain
Township		Avon
Section and Subsection		
Hydrologic Unit Code		#04110001
Site Visit		05/23/2017
National Wetland Inventory Map		Х
Ohio Wetland Inventory Map		
Soil Survey		Х
Delineation report/map		Х

Name of Wetland: Wetland W-2		
Wetland Size (acres, hectares): 0.067 acres		
Sketch: Include north arrow, relationship with other surface waters, vegetation zo	ones, etc.	
Please see attached.		
Comments, Narrative Discussion, Justification of Category Changes:		
Final score : 29.5	Category:	1

Scoring Boundary Worksheet

INSTRUCTIONS. The initial step in completing the ORAM is to identify the "scoring boundaries" of the wetland being rated. In many instances this determination will be relatively easy and the scoring boundaries will coincide with the "jurisdictional boundaries." For example, the scoring boundary of an isolated cattail marsh located in the middle of a farm field will likely be the same as that wetland's jurisdictional boundaries. In other instances, however, the scoring boundary will not be as easily determined. Wetlands that are small or isolated from other surface waters often form large contiguous areas or heterogeneous complexes of wetland and upland. In separating wetlands for scoring purposes, the hydrologic regime of the wetland is the main criterion that should be used. Boundaries between contiguous or connected wetlands should be established where the volume, flow, or velocity of water moving through the wetland changes significantly. Areas with a high degree of hydrologic interaction should be scored as a single wetland. In determining a wetland's scoring boundaries, use the guidelines in the ORAM Manual Section 5.0. In certain instances, it may be difficult to establish the scoring boundary for the wetland being rated. These problem situations include wetlands that form a patchwork on the landscape, wetlands divided by artificial boundaries like property fences, roads, or railroad embankments, wetlands that are contiguous with streams, lakes, or rivers, and estuarine or coastal wetlands. These situations are discussed below, however, it is recommended that Rater contact Ohio EPA, Division of Surface Water, 401/Wetlands Section if there are additional questions or a need for further clarification of the appropriate scoring boundaries of a particular wetland.

#	Steps in properly establishing scoring boundaries	done?	not applicable
Step 1	Identify the wetland area of interest. This may be the site of a proposed impact, a reference site, conservation site, etc.	х	
Step 2	Identify the locations where there is physical evidence that hydrology changes rapidly. Such evidence includes both natural and human- induced changes including, constrictions caused by berms or dikes, points where the water velocity changes rapidly at rapids or falls, points where significant inflows occur at the confluence of rivers, or other factors that may restrict hydrologic interaction between the wetlands or parts of a single wetland.	Х	
Step 3	Delineate the boundary of the wetland to be rated such that all areas of interest that are contiguous to and within the areas where the hydrology does not change significantly, i.e. areas that have a high degree of hydrologic interaction are included within the scoring boundary.	х	
Step 4	Determine if artificial boundaries, such as property lines, state lines, roads, railroad embankments, etc., are present. These should not be used to establish scoring boundaries unless they coincide with areas where the hydrologic regime changes.	х	
Step 5	In all instances, the Rater may enlarge the minimum scoring boundaries discussed here to score together wetlands that could be scored separately.		N/A
Step 6	Consult ORAM Manual Section 5.0 for how to establish scoring boundaries for wetlands that form a patchwork on the landscape, divided by artificial boundaries, contiguous to streams, lakes or rivers, or for dual classifications.		N/A

End of Scoring Boundary Determination. Begin Narrative Rating on next page.

Narrative Rating

INSTRUCTIONS. Answer each of the following questions. Questions 1, 2, 3 and 4 should be answered based on information obtained from the site visit or the literature *and* by submitting a Data Services Request to the Ohio Department of Natural Resources, Division of Natural Areas and Preserves, Natural Heritage Data Services, 1889 Fountain Square Court, Building F-1, Columbus, Ohio 43224, 614-265-6453 (phone), 614-265-3096 (fax), <u>http://www.dnr.state.oh.us/dnap</u>. The remaining questions are designed to be answered primarily by the results of the site visit. Refer to the User's Manual for descriptions of these wetland types. Note: "Critical habitat" is legally defined in the Endangered Species Act and is the geographic area containing physical or biological features essential to the conservation of a listed species or as an area that may require special management considerations or protection. The Rater should contact the Region 3 Headquarters or the Columbus Ecological Services Office for updates as to whether critical habitat has been designated for other federally listed threatened or endangered species. "Documented" means the wetland is listed in the appropriate State of Ohio database.

#	Question	Circle one	
1	Critical Habitat Is the watland in a township section or subsection of	VES	
1	a United States Geological Survey 7.5 minute Quadrandle that has		
	been designated by the U.S. Fish and Wildlife Service as "critical	Wetland should be	Go to Question 2
	habitat" for any threatened or endangered plant or animal species?	evaluated for possible	
	Note: as of January 1, 2001, of the federally listed endangered or	Category 3 status	
	had critical babitat designated (50 CER 17 95(a)) and the piping ployer	Go to Question 2	
	has had critical habitat proposed (65 FR 41812 July 6, 2000).		
2	Threatened or Endangered Species. Is the wetland known to contain	YES	(NO)
	an individual of, or documented occurrences of federal or state-listed	Matter dia 6 October	
	threatened or endangered plant or animal species?	3 wetland is a Category	Go to Question 3
		o wettand.	
		Go to Question 3	
3	Documented High Quality Wetland. Is the wetland on record in	YES	$ $ \square
	Natural mentage Database as a high quality wetland?	Wetland is a Category	Go to Question 4
		3 wetland	
		Co to Ourstian A	
4	Significant Breeding or Concentration Area Does the wetland	Go to Question 4	
-	contain documented regionally significant breeding or nonbreeding	125	
	waterfowl, neotropical songbird, or shorebird concentration areas?	Wetland is a Category	Go to Question 5
		3 wetland	
		Go to Question 5	
5	Category 1 Wetlands. Is the wetland less than 0.5 hectares (1 acre)	YES	(NO)
	in size and hydrologically isolated and either 1) comprised of		
	vegetation that is dominated (greater than eighty per cent areal cover)	Wetland is a Category	Go to Question 6
	2) an acidic pond created or excavated on mined lands that has little or		
	no vegetation?	Go to Question 6	
6	Bogs. Is the wetland a peat-accumulating wetland that 1) has no	YES	NO
	significant inflows or outflows, 2) supports acidophilic mosses,	Wetland is a Category	Go to Question 7
	cover, 4) at least one species from Table 1 is present, and 5) the	3 wetland	
	cover of invasive species (see Table 1) is <25%?		
-7	Fana le the watland a carbon accumulating (next much) watland that	Go to Question 7	
<u> </u>	is saturated during most of the year, primarily by a discharge of free	160	
	flowing, mineral rich, ground water with a circumneutral ph (5.5-9.0)	Wetland is a Category	Go to Question 8a
	and with one or more plant species listed in Table 1 and the cover of	3 wetland	
	invasive species listed in Table 1 is <25%?	Go to Question 8a	
8a	"Old Growth Forest." Is the wetland a forested wetland and is the	YES	(NO)
	forest characterized by, but not limited to, the following characteristics:		
	overstory canopy trees of great age (exceeding at least 50% of a	Wetland is a Category	Go to Question 8b
	projected maximum attainable age for a species); little or no evidence	3 wetland.	
	years; an all-aged structure and multilayered canopies: adaredations of	Go to Question 8b	
	canopy trees interspersed with canopy gaps; and significant numbers		
	of standing dead snags and downed logs?		

8b	Mature forested wetlands. Is the wetland a forested wetland with	YES	\mathbb{N}
	deciduous trees with large diameters at breast height (dbh), generally diameters greater than 45cm (17.7in) dbh?	Wetland should be evaluated for possible Category 3 status.	Go to Question 9a
		Go to Question 9a	
9a	Lake Erie coastal and tributary wetlands. Is the wetland located at	YES	NO
	an elevation less than 575 feet on the USGS map, adjacent to this elevation, or along a tributary to Lake Erie that is accessible to fish?	Go to Question 9b	Go to Question 10
9b	Does the wetland's hydrology result from measures designed to	YES	NO
	prevent erosion and the loss of aquatic plants, i.e. the wetland is partially hydrologically restricted from Lake Erie due to lakeward or landward dikes or other hydrological controls?	Wetland should be evaluated for possible Category 3 status	Go to Question 9c
		Go to Question 10	
9c	Are Lake Erie water levels the wetland's primary hydrological influence,	YES	NO
	I.e. the wetland is hydrologically unrestricted (no lakeward or upland border alterations), or the wetland can be characterized as an "estuarine" wetland with lake and river influenced hydrology. These include sandbar deposition wetlands, estuarine wetlands, river mouth wetlands, or those dominated by submersed aquatic vecetation.	Go to Question 9d	Go to Question 10
9d	Does the wetland have a predominance of native species within its	YES	NO
	vegetation communities, although non-native or disturbance tolerant native species can also be present?	Wetland is a Category 3 wetland	Go to Question 9e
		Go to Question 10	
9e	Does the wetland have a predominance of non-native or disturbance	YES	NO
	tolerant native plant species within its vegetation communities?	Wetland should be evaluated for possible Category 3 status	Go to Question 10
10	Lake Plain Sand Prairies (Oak Openings) Is the wetland located in	YES	NO
	Lucas, Fulton, Henry, or Wood Counties and can the wetland be characterized by the following description: the wetland has a sandy substrate with interspersed organic matter, a water table often within several inches of the surface, and often with a dominance of the gramineous vegetation listed in Table 1 (woody species may also be present). The Ohio Department of Natural Resources Division of Natural Areas and Preserves can provide assistance in confirming this	Wetland is a Category 3 wetland. Go to Question 11	Go to Question 11
11	type or wetland and its quality. Relict Wet Prairies Is the wetland a relict wet prairie community	YES	KO
	dominated by some or all of the species in Table 1. Extensive prairies were formerly located in the Darby Plains (Madison and Union Counties), Sandusky Plains (Wyandot, Crawford, and Marion Counties), northwest Ohio (e.g. Erie, Huron, Lucas, Wood Counties), and portions of western Ohio Counties (e.g. Darke, Mercer, Miami, Montgomery, Van Wert etc.).	Wetland should be evaluated for possible Category 3 status Complete Quantitative Rating	Complete Quantitative Rating

Table 1. Characteristic plant species.	
--	--

invasive/exotic spp	fen species	bog species	0ak Opening species	wet prairie species
Lythrum salicaria	Zygadenus elegans var. glaucus	Calla palustris	Carex cryptolepis	Calamagrostis canadensis
Myriophyllum spicatum	Cacalia plantaginea	Carex atlantica var. capillacea	Carex lasiocarpa	Calamogrostis stricta
Najas minor	Carex flava	Carex echinata	Carex stricta	Carex atherodes
Phalaris arundinacea	Carex sterilis	Carex oligosperma	Cladium mariscoides	Carex buxbaumii
Phragmites australis	Carex stricta	Carex trisperma	Calamagrostis stricta	Carex pellita
Potamogeton crispus	Deschampsia caespitosa	Chamaedaphne calyculata	Calamagrostis canadensis	Carex sartwellii
Ranunculus ficaria	Eleocharis rostellata	Decodon verticillatus	Quercus palustris	Gentiana andrewsii
Rhamnus frangula	Eriophorum viridicarinatum	Eriophorum virginicum		Helianthus grosseserratus
Typha angustifolia	Gentianopsis spp.	Larix laricina		Liatris spicata
Typha xglauca	Lobelia kalmii	Nemopanthus mucronatus		Lysimachia quadriflora
	Parnassia glauca	Schechzeria palustris		Lythrum alatum
	Potentilla fruticosa	Sphagnum spp.		Pycnanthemum virginianum
	Rhamnus alnifolia	Vaccinium macrocarpon		Silphium terebinthinaceum
	Rhynchospora capillacea	Vaccinium corymbosum		Sorghastrum nutans
	Salix candida	Vaccinium oxycoccos		Spartina pectinata
	Salix myricoides	Woodwardia virginica		Solidago riddellii
	Salix serissima	Xyris difformis		
	Solidago ohioensis			
	Tofieldia glutinosa			
	Triglochin maritimum			
	Triglochin palustre			

End of Narrative Rating. Begin Quantitative Rating on next page.

Site:	Wetland	d W-2	Rater(s): R. Warren		
		1			
0	0	Metric 1. Wetland Area	ı (size).		
max 6 pts.	subtotal	Select one size class and assign sco	ire.		
		>50 acres (>20.2ha) (6 pts)			
		25 to <50 acres (10.1 to <20.2	ha) (5 pts)		
		10 to <25 acres (4 to <10.1 ha 3 to <10 acres (1 2 to <4 ha) (2) (4 pts) 3 pts)		
		0.3 to < 3 acres (012 to <1.2hz	a) (2 pts)		
		0.1 to <0.3 acres (0.04 to <0.1	2ha) (1 pt)		
	1	x <0.1 acres (0.04ha) (0 pts)			
8	8	Metric 2 Upland buffe	rs and surrounding land	USP	
max 14 pts.	subtotal	2a. Calculate average buffer width. Select	t only one and assign score. Do not double c	check.	
		WIDE. Buffers average 50m (164 ft) or more around wetland perimeter (7)		
		x MEDIUM. Buffers average 25	m to <50m (82 to <164ft) around wetland per	imeter (4)	
		NARROW. Buffers average 1	0m to <25m (32ft to <82ft) around wetland perimeter	erimeter (1)	
		2b. Intensity of surrounding land use. Sele	ect one or double check and average.	(0)	
		VERY LOW. 2nd growth or old	der forest, prairie, savannah, wildlife area, etc	c. (7)	
		x LOW. Old field (>10 years), st	nrubland, young second growth forest. (5)		
		X MODERATELY HIGH. Reside	ential, fenced pasture, park, conservation tilla	ge, new fallow fie	ld. (3)
			pastare, rew cropping, mining, construction.	(1)	
9	17	Metric 3. Hydrology.			
max 30 pts.	subtotal	3a. Sources of Water. Score all that apply	<i>י</i> .	3b. Connectivity	y. Score all that apply.
		High pH groundwater (5)			100 year floodplain (1)
		Other groundwater (3)		X	Between stream/lake and other human use (1) Part of wetland/upland (e.g. forest), complex (1)
		Seasonal/Intermittent surface	water (3)		Part of riparian or upland corridor (1)
		Perennial surface water (lake o	or stream (5)	on/saturation. So	core one or dbl check.
3c. Maxim	um water dep	th. Select only one and assign score.			Semi- to permanently inundated/saturated (4)
		>0.7 (27.60) (3) 0.4 to 0.7m (15.7 to 27.6in) (2)		X	Regularly inundated/saturated (3)
		x <0.4m (<15.7in) (1)			Seasonally saturated in upper 30cm (12in) (1)
		3e. Modifications to natural hydrologic regi	me. Score one or double check and average	e.	
		None or none apparent (12)	Check all disturbances observed	r	point source (ponstormwater)
		x Recovering (3)	tile	x	filling/grading
		Recent or no recovery (1)	dike	х	road bed/RR track
			weir		dredging
			x stormwater input		Other: clearing
		۱			
7.5	24.5	Metric 4. Habitat Altera	ation and Development.		
max 20 pts.	subtotal	4a. Substrate disturbance. Score one or d	louble check and average.		
		None or none apparent (4)			
		x Recovering (2)			
		Recent or no recovery (1)			
		4b. Habitat development. Select only one	and assign score.		
		Excellent (7)			
		Good (5)			
		Moderately good (4)			
		Fair (3)			
		Poor to fair (2)			
		4c. Habitat alteration. Score one or double	e check and average.		
		None or none apparent (9)	Check all disturbances observed]
		x Recovered (6)	x mowing	Х	shrub/sapling removal
		x Recovering (3)	grazing	v	herbaceous/aquatic bed removal sedimentation
	045		selective cutting	^	dredging
	24.5		woody debris removal	х	farming (historic)
SL	ubtotal this page		x toxic pollutants		nutrient enrichment

5 max 20 pts.

29.5

0	
Rater(s): R. Warren	
	o Rater(s): R. Warren

Metric 5. Special Wetlands. 24.5 0

max 10 pts. Check all that apply and score as indicated. subtotal

Bog (10)
Fen (10)
Old growth forest (10)
Mature forested wetland (5)
Lake Erie coastal/tributary wetland -unrestricted hydrology (10)
Lake Erie coastal/tributary wetland-restricted hydrology (5)
Lake Plain Sand Prairies (Oak Openings) (10)
Relict Wet Prairies (10)
Known occurrence state/federal threatened or endangered species (10)
Significant migratory songbird/water fowl habitat or usage (10)
Category 1 Wetland. See Question 1 Qualitative Rating (-10)

29.5 Metric 6. Plant communities, interspersion, microtopography.

Score all n	present using 0 to 3 scale	0	Absent or comprises <0 1ha (0.2471 acres) configuous area	
		U	Present and either comprises small part of wetland's vegetation and	
	Aquatic bed	1	of moderate quality, or comprises a significant part but is of low qual	
1	Emergent			
	Shrub	0	Present and either comprises significant part of wetland's vegetation	
	Forest	Z	quality.	
	Mudflats		Present and comprises significant part, or more, of wetland's	
	Open Water	3	vegetation and is of high quality.	
Ch. Llariza	Other	Normative Description of	Verentetion Quality	
Score only	ontal (plan view) interspersion.	Narrative Description of	Vegetation Quality	
		low	tolerant native species	
	High (5)	mod	Native on are dominant component of the vegetation, although	
	Moderately high (4)	mou	nonnative and/or disturbance tolerant native spp can also be present	
	Moderate (3)		and species diversity moderate to moderately high, but generally w/o	
х	Moderately low (2)		presence of rare, threatened, or endangered spp	
	Low (1)	high	A predominance of native species, with nonnative spp and/or	
	None (0)		spp diversity and often, but not always, the presence of rare.	
6c. Cover	age of invasive plants. Refer to		threatened, or endangered spp	
Table 1 Of	RAM long form for list. Add or	Mudflat and Open Water	Class Quality	
deduct poi	nts for coverage.	0	Absent <0.1ha (0.247 acres)	
	Extensive >75% cover (-5)	1	Low 0.1 to <1ha (0.247 to 2.47 acres)	
	Moderate 25-75% cover (-3)	2	Moderate 1 to <4ha (2.47 to 9.88 acres)	
	Sparse 5-25% cover (-1)	3	High 4ha (9.88 acres) or more	
	Nearly absent <5% cover (0)	Microtopography Cover	Scale	
x	Absent (1)	0	Absent	
6d. Microt	opography.	1		
Score all p	resent using 0 to 3 scale.		Present in very small amounts or if more common of marginal quality	
1	Vegetated hummucks/tussucks	2	Present in moderate amounts, but not of highest quality or in small	
0	Coarse woody debris >15cm (6in)	L	amounts of highest quality	
0	Standing dead >25cm (10in) dbh			
	1	3		

Refer to the most recent ORAM score calibration report for the scoring breakpoints between categories at the following address: http://epa.state.oh.us/dsw/401/401.html

ORAM	Summary	Worksheet
------	---------	-----------

	circle			
		answer or		
		insert	Result	
		score		
Narrative Rating	Question 1 Critical Habitat	YES NO	If yes, Category 3.	
	Question 2. Threatened or Endangered Species	YES NO	If yes, Category 3.	
	Question 3. High Quality Natural Wetland	YES NO	If yes, Category 3.	
	Question 4. Significant bird habitat	YES NO	If yes, Category 3.	
	Question 5. Category 1 Wetlands	YES NO	If yes, Category 1.	
	Question 6. Bogs	YES NO	If yes, Category 3.	
	Question 7. Fens	YES NO	If yes, Category 3.	
	Question 8a. Old Growth Forest	YES NO	If yes, Category 3.	
	Question 8b. Mature Forested Wetland	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.	
	Question 9b. Lake Erie Wetlands - Restricted	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.	
	Question 9d. Lake Erie Wetlands – Unrestricted with native plants	YES NO	If yes, Category 3	
	Question 9e. Lake Erie Wetlands - Unrestricted with invasive plants	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.	
	Question 10. Oak Openings	YES NO	If yes, Category 3	
	Question 11. Relict Wet Prairies	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.	
Quantitative Rating	Metric 1. Size	0		
	Metric 2. Buffers and surrounding land use	8		
	Metric 3. Hydrology	9		
	Metric 4. Habitat	7.5		
	Metric 5. Special Wetland Communities	0		
	Metric 6. Plant communities, interspersion, microtopography	5		
	TOTAL SCORE	29.5	Category based on score breakpoints 1	

Complete Wetland Categorization Worksheet.

Wetland Categorization Worksheet

Choices	Circle one		Evaluation of Categorization Result of ORAM
Did you answer "Yes" to any of the following questions: Narrative Rating Nos. 2, 3, 4, 6, 7, 8a, 9d, 10	YES Wetland is categorized as a Category 3 wetland	NO	Is quantitative rating score <i>less</i> than the Category 2 scoring threshold (<i>excluding</i> gray zone)? If yes, reevaluate the category of the wetland using the narrative criteria in OAC Rule 3745-1-54(C) and biological and/or functional assessments to determine if the wetland has been over-categorized by the ORAM
Did you answer "Yes" to any of the following questions: Narrative Rating Nos. 1, 8b, 9b, 9e, 11	YES Wetland should be evaluated for possible Category 3 status	NO	Evaluate the wetland using the 1) narrative criteria in OAC Rule 3745-1-54(C) and 2) the quantitative rating score. If the wetland is determined to be a Category 3 wetland using either of these, it should be categorized as a Category 3 wetland. Detailed biological and/or functional assessments may also be used to determine the wetland's category.
Did you answer "Yes" to Narrative Rating No. 5	YES Wetland is categorized as a Category 1 wetland	NO	Is quantitative rating score <i>greater</i> than the Category 2 scoring threshold <i>(including</i> any gray zone)? If yes, reevaluate the category of the wetland using the narrative criteria in OAC Rule 3745-1-54(C) and biological and/or functional assessments to determine if the wetland has been under-categorized by the ORAM
Does the quantitative score fall within the scoring range of a Category 1, 2, or 3 wetland?	YES Wetland is assigned to the appropriate category based on the scoring range	\mathbb{N}	If the score of the wetland is located within the scoring range for a particular category, the wetland should be assigned to that category. In all instances however, the narrative criteria described in OAC Rule 3745-1-54(C) can be used to clarify or change a categorization based on a quantitative score.
Does the quantitative score fall with the <i>"gray zone"</i> for Category 1 or 2 or Category 2 or 3 wetlands?	YES Wetland is assigned to the higher of the two categories or assigned to a category based on detailed assessments and the narrative criteria		Rater has the option of assigning the wetland to the higher of the two categories or to assign a category based on the results of a nonrapid wetland assessment method, e.g. functional assessment, biological assessment, etc, and a consideration of the narrative criteria in OAC rule 3745-1- 54(C).
Does the wetland otherwise exhibit <i>moderate OR superior</i> hydrologic OR habitat, OR recreational functions AND the wetland was <i>not</i> categorized as a Category 2 wetland (in the case of moderate functions) or a Category 3 wetland (in the case of superior functions) by this method?	YES Wetland was undercategorized by this method. A written justification for recategorization should be provided on Background Information Form	Wetland is assigned to category as determined by the ORAM.	A wetland may be undercategorized using this method, but still exhibit one or more superior functions, e.g. a wetland's biotic communities may be degraded by human activities, but the wetland may still exhibit superior hydrologic functions because of its type, landscape position, size, local or regional significance, etc. In this circumstance, the narrative criteria in OAC Rule 3745-1-54(C)(2) and (3) are controlling, and the under-categorization should be corrected. A written justification with supporting reasons or information for this determination should be provided.

End of Ohio Rapid Assessment Method for Wetlands.
Background Information

Name:		
	Reiss	Warren

^{Date:} 5/23/2017

Affiliation: EnviroScience, Inc.

Address: 5070 Stow Road, Stow, Ohio 44224

Phone Number: 330-688-0111 ext. 262

e-mail address: RWarren@EnviroScienceInc.com

Name of Wetland: Wetland W-3

Vegetation Communit(ies): PEM

HGM Class(es): Riverine

Location of Wetland: include map, address, north arrow, landmarks, distances, roads, etc.

Please see attached.

Lat/Long or UTM Coordinate 41.47668	7, -81.041774
USGS Quad Name	Avon
County	Lorain
Township	Avon
Section and Subsection	
Hydrologic Unit Code	#04110001
Site Visit	05/23/2017
National Wetland Inventory Map	X
Ohio Wetland Inventory Map	
Soil Survey	Х
Delineation report/map	Х

Name of Wetland: Wetland W-3		
Wetland Size (acres, hectares): 9 434 acres		
Sketch: Include north arrow, relationship with other surface waters, vegetation zones, etc	-	
Wetland Size (acres, hectares): 9.434 acres Sketch: Include north arrow, relationship with other surface waters, vegetation zones, etc Please see attached.	·.	
Comments, Narrative Discussion, Justification of Category Changes:		
Final score : 39Cat	egory:	modified 2

Scoring Boundary Worksheet

INSTRUCTIONS. The initial step in completing the ORAM is to identify the "scoring boundaries" of the wetland being rated. In many instances this determination will be relatively easy and the scoring boundaries will coincide with the "jurisdictional boundaries." For example, the scoring boundary of an isolated cattail marsh located in the middle of a farm field will likely be the same as that wetland's jurisdictional boundaries. In other instances, however, the scoring boundary will not be as easily determined. Wetlands that are small or isolated from other surface waters often form large contiguous areas or heterogeneous complexes of wetland and upland. In separating wetlands for scoring purposes, the hydrologic regime of the wetland is the main criterion that should be used. Boundaries between contiguous or connected wetlands should be established where the volume, flow, or velocity of water moving through the wetland changes significantly. Areas with a high degree of hydrologic interaction should be scored as a single wetland. In determining a wetland's scoring boundaries, use the guidelines in the ORAM Manual Section 5.0. In certain instances, it may be difficult to establish the scoring boundary for the wetland being rated. These problem situations include wetlands that form a patchwork on the landscape, wetlands divided by artificial boundaries like property fences, roads, or railroad embankments, wetlands that are contiguous with streams, lakes, or rivers, and estuarine or coastal wetlands. These situations are discussed below, however, it is recommended that Rater contact Ohio EPA, Division of Surface Water, 401/Wetlands Section if there are additional questions or a need for further clarification of the appropriate scoring boundaries of a particular wetland.

#	Steps in properly establishing scoring boundaries	done?	not applicable
Step 1	Identify the wetland area of interest. This may be the site of a proposed impact, a reference site, conservation site, etc.	х	
Step 2	Identify the locations where there is physical evidence that hydrology changes rapidly. Such evidence includes both natural and human- induced changes including, constrictions caused by berms or dikes, points where the water velocity changes rapidly at rapids or falls, points where significant inflows occur at the confluence of rivers, or other factors that may restrict hydrologic interaction between the wetlands or parts of a single wetland.	Х	
Step 3	Delineate the boundary of the wetland to be rated such that all areas of interest that are contiguous to and within the areas where the hydrology does not change significantly, i.e. areas that have a high degree of hydrologic interaction are included within the scoring boundary.	х	
Step 4	Determine if artificial boundaries, such as property lines, state lines, roads, railroad embankments, etc., are present. These should not be used to establish scoring boundaries unless they coincide with areas where the hydrologic regime changes.	х	
Step 5	In all instances, the Rater may enlarge the minimum scoring boundaries discussed here to score together wetlands that could be scored separately.		N/A
Step 6	Consult ORAM Manual Section 5.0 for how to establish scoring boundaries for wetlands that form a patchwork on the landscape, divided by artificial boundaries, contiguous to streams, lakes or rivers, or for dual classifications.		N/A

End of Scoring Boundary Determination. Begin Narrative Rating on next page.

Narrative Rating

INSTRUCTIONS. Answer each of the following questions. Questions 1, 2, 3 and 4 should be answered based on information obtained from the site visit or the literature *and* by submitting a Data Services Request to the Ohio Department of Natural Resources, Division of Natural Areas and Preserves, Natural Heritage Data Services, 1889 Fountain Square Court, Building F-1, Columbus, Ohio 43224, 614-265-6453 (phone), 614-265-3096 (fax), <u>http://www.dnr.state.oh.us/dnap</u>. The remaining questions are designed to be answered primarily by the results of the site visit. Refer to the User's Manual for descriptions of these wetland types. Note: "Critical habitat" is legally defined in the Endangered Species Act and is the geographic area containing physical or biological features essential to the conservation of a listed species or as an area that may require special management considerations or protection. The Rater should contact the Region 3 Headquarters or the Columbus Ecological Services Office for updates as to whether critical habitat has been designated for other federally listed threatened or endangered species. "Documented" means the wetland is listed in the appropriate State of Ohio database.

#	Question	Circle one	
1	Critical Habitat Is the watland in a township section or subsection of	VES	
1	a United States Geological Survey 7.5 minute Quadrandle that has		
	been designated by the U.S. Fish and Wildlife Service as "critical	Wetland should be	Go to Question 2
	habitat" for any threatened or endangered plant or animal species?	evaluated for possible	
	Note: as of January 1, 2001, of the federally listed endangered or	Category 3 status	
	had critical babitat designated (50 CER 17 95(a)) and the piping ployer	Go to Question 2	
	has had critical habitat proposed (65 FR 41812 July 6, 2000).		
2	Threatened or Endangered Species. Is the wetland known to contain	YES	(NO)
	an individual of, or documented occurrences of federal or state-listed	Matter dia 6 October	
	threatened or endangered plant or animal species?	3 wetland is a Category	Go to Question 3
		o wettand.	
		Go to Question 3	
3	Documented High Quality Wetland. Is the wetland on record in	YES	$ $ \square
	Natural mentage Database as a high quality wetland?	Wetland is a Category	Go to Question 4
		3 wetland	
		Co to Ourstian A	
4	Significant Breeding or Concentration Area Does the wetland	Go to Question 4	
-	contain documented regionally significant breeding or nonbreeding	125	
	waterfowl, neotropical songbird, or shorebird concentration areas?	Wetland is a Category	Go to Question 5
		3 wetland	
		Go to Question 5	
5	Category 1 Wetlands. Is the wetland less than 0.5 hectares (1 acre)	YES	(NO)
	in size and hydrologically isolated and either 1) comprised of		
	vegetation that is dominated (greater than eighty per cent areal cover)	Wetland is a Category	Go to Question 6
	2) an acidic pond created or excavated on mined lands that has little or		
	no vegetation?	Go to Question 6	
6	Bogs. Is the wetland a peat-accumulating wetland that 1) has no	YES	NO
	significant inflows or outflows, 2) supports acidophilic mosses,	Wetland is a Category	Go to Question 7
	cover, 4) at least one species from Table 1 is present, and 5) the	3 wetland	
	cover of invasive species (see Table 1) is <25%?		
-7	Fana le the watland a carbon accumulating (next much) watland that	Go to Question 7	
<u> </u>	is saturated during most of the year, primarily by a discharge of free	160	
	flowing, mineral rich, ground water with a circumneutral ph (5.5-9.0)	Wetland is a Category	Go to Question 8a
	and with one or more plant species listed in Table 1 and the cover of	3 wetland	
	invasive species listed in Table 1 is <25%?	Go to Question 8a	
8a	"Old Growth Forest." Is the wetland a forested wetland and is the	YES	(NO)
	forest characterized by, but not limited to, the following characteristics:		
	overstory canopy trees of great age (exceeding at least 50% of a	Wetland is a Category	Go to Question 8b
	projected maximum attainable age for a species); little or no evidence	3 wetland.	
	years; an all-aged structure and multilayered canopies: adaredations of	Go to Question 8b	
	canopy trees interspersed with canopy gaps; and significant numbers		
	of standing dead snags and downed logs?		

8b	Mature forested wetlands. Is the wetland a forested wetland with	YES	\mathbb{N}
	deciduous trees with large diameters at breast height (dbh), generally diameters greater than 45cm (17.7in) dbh?	Wetland should be evaluated for possible Category 3 status.	Go to Question 9a
		Go to Question 9a	
9a	Lake Erie coastal and tributary wetlands. Is the wetland located at	YES	NO
	an elevation less than 575 feet on the USGS map, adjacent to this elevation, or along a tributary to Lake Erie that is accessible to fish?	Go to Question 9b	Go to Question 10
9b	Does the wetland's hydrology result from measures designed to	YES	NO
	prevent erosion and the loss of aquatic plants, i.e. the wetland is partially hydrologically restricted from Lake Erie due to lakeward or landward dikes or other hydrological controls?	Wetland should be evaluated for possible Category 3 status	Go to Question 9c
		Go to Question 10	
9c	Are Lake Erie water levels the wetland's primary hydrological influence,	YES	NO
	I.e. the wetland is hydrologically unrestricted (no lakeward or upland border alterations), or the wetland can be characterized as an "estuarine" wetland with lake and river influenced hydrology. These include sandbar deposition wetlands, estuarine wetlands, river mouth wetlands, or those dominated by submersed aquatic vecetation.	Go to Question 9d	Go to Question 10
9d	Does the wetland have a predominance of native species within its	YES	NO
	vegetation communities, although non-native or disturbance tolerant native species can also be present?	Wetland is a Category 3 wetland	Go to Question 9e
		Go to Question 10	
9e	Does the wetland have a predominance of non-native or disturbance	YES	NO
	tolerant native plant species within its vegetation communities?	Wetland should be evaluated for possible Category 3 status	Go to Question 10
10	Lake Plain Sand Prairies (Oak Openings) Is the wetland located in	YES	NO
	Lucas, Fulton, Henry, or Wood Counties and can the wetland be characterized by the following description: the wetland has a sandy substrate with interspersed organic matter, a water table often within several inches of the surface, and often with a dominance of the gramineous vegetation listed in Table 1 (woody species may also be present). The Ohio Department of Natural Resources Division of Natural Areas and Preserves can provide assistance in confirming this	Wetland is a Category 3 wetland. Go to Question 11	Go to Question 11
11	type or wetland and its quality. Relict Wet Prairies Is the wetland a relict wet prairie community	YES	KO
	dominated by some or all of the species in Table 1. Extensive prairies were formerly located in the Darby Plains (Madison and Union Counties), Sandusky Plains (Wyandot, Crawford, and Marion Counties), northwest Ohio (e.g. Erie, Huron, Lucas, Wood Counties), and portions of western Ohio Counties (e.g. Darke, Mercer, Miami, Montgomery, Van Wert etc.).	Wetland should be evaluated for possible Category 3 status Complete Quantitative Rating	Complete Quantitative Rating

Table 1. Characteristic plant species.	
--	--

invasive/exotic spp	fen species	bog species	0ak Opening species	wet prairie species
Lythrum salicaria	Zygadenus elegans var. glaucus	Calla palustris	Carex cryptolepis	Calamagrostis canadensis
Myriophyllum spicatum	Cacalia plantaginea	Carex atlantica var. capillacea	Carex lasiocarpa	Calamogrostis stricta
Najas minor	Carex flava	Carex echinata	Carex stricta	Carex atherodes
Phalaris arundinacea	Carex sterilis	Carex oligosperma	Cladium mariscoides	Carex buxbaumii
Phragmites australis	Carex stricta	Carex trisperma	Calamagrostis stricta	Carex pellita
Potamogeton crispus	Deschampsia caespitosa	Chamaedaphne calyculata	Calamagrostis canadensis	Carex sartwellii
Ranunculus ficaria	Eleocharis rostellata	Decodon verticillatus	Quercus palustris	Gentiana andrewsii
Rhamnus frangula	Eriophorum viridicarinatum	Eriophorum virginicum		Helianthus grosseserratus
Typha angustifolia	Gentianopsis spp.	Larix laricina		Liatris spicata
Typha xglauca	Lobelia kalmii	Nemopanthus mucronatus		Lysimachia quadriflora
	Parnassia glauca	Schechzeria palustris		Lythrum alatum
	Potentilla fruticosa	Sphagnum spp.		Pycnanthemum virginianum
	Rhamnus alnifolia	Vaccinium macrocarpon		Silphium terebinthinaceum
	Rhynchospora capillacea	Vaccinium corymbosum		Sorghastrum nutans
	Salix candida	Vaccinium oxycoccos		Spartina pectinata
	Salix myricoides	Woodwardia virginica		Solidago riddellii
	Salix serissima	Xyris difformis		
	Solidago ohioensis			
	Tofieldia glutinosa			
	Triglochin maritimum			
	Triglochin palustre			

End of Narrative Rating. Begin Quantitative Rating on next page.

Site:	Wetland	1 W-3	Rater(s): R. Warren		
3	3	Metric 1. Wetland Area	ı (size).		
max 6 pts.	subtotal	Select one size class and assign sco	re.		
		>50 acres (>20.2ha) (6 pts)			
		25 to <50 acres (10.1 to <20.2	ha) (5 pts)		
		x 3 to <10 acres (1.2 to <4 ha) (5	3 pts)		
		0.3 to < 3 acres (012 to <1.2hz	a) (2 pts)		
		0.1 to <0.3 acres (0.04 to <0.1	2ha) (1 pt)		
	r	<0.1 acres (0.04ha) (0 pts)			
8	11	Metric 2. Upland buffe	rs and surrounding land	use.	
max 14 pts.	subtotal	2a. Calculate average buffer width. Select	t only one and assign score. Do not double c	heck.	
		WIDE. Buffers average 50m (164 ft) or more around wetland perimeter (7)		
		X MEDIUM. Buffers average 25	m to <50m (82 to <164ft) around wetland peri 0m to <25m (32ft to <82ft) around wetland pe	imeter (4)	
		VERY NARROW. Buffers average 1	erage <10m (<32ft) around wetland perimeter		
		2b. Intensity of surrounding land use. Sele	ect one or double check and average.	(-)	
		x VERY LOW. 2nd growth or old	der forest, prairie, savannah, wildlife area, etc	c. (7)	
		LOW. Old field (>10 years), st	nrubland, young second growth forest. (5)	ae new fallow fie	ld (3)
		X HIGH. Urban, industrial, open	pasture, row cropping, mining, construction.	(1)	u. (5)
40	07				
16	27	Metric 3. Hydrology.			
max 30 pts.	subtotal	3a. Sources of Water. Score all that apply	<i>'</i> .	3b. Connectivity	/. Score all that apply.
		Other groundwater (3)		x	Between stream/lake and other human use (1)
		x Precipitation (1)			Part of wetland/upland (e.g. forest), complex (1)
		x Seasonal/Intermittent surface	water (3)	x	Part of riparian or upland corridor (1)
2. Maxim	um water den	Perennial surface water (lake o	or stream (5)	on/saturation. So	core one or dbl check.
3c. Maxim	ium water dep	In. Select only one and assign score. >0.7 (27.6in) (3)		x	Regularly inundated/saturated (3)
		x 0.4 to 0.7m (15.7 to 27.6in) (2)			Seasonally inundated (2)
		<0.4m (<15.7in) (1)	ma Seere and an double check and overage		Seasonally saturated in upper 30cm (12in) (1)
		None or none apparent (12)	Check all disturbances observed		
		x Recovered (7)	x ditch		point source (nonstormwater)
		x Recovering (3)	tile	x	filling/grading
		Recent or no recovery (1)	dike		road bed/RR track
			stormwater input		Other: clearing
10	27	Motrie 4 Habitat Altar	tion and Development		
IU may 20 pto	37	Metric 4. Habitat Altera	ation and Development.		
max 20 pts.	Subiotai	None or none apparent (4)	ouble check and average.		
		x Recovered (3)			
		x Recovering (2)			
		Ab Habitat development Select only one	and assign score		
		Excellent (7)			
		Very good (6)			
		Good (5)			
		Eair (3)			
		Poor to fair (2)			
		Poor (1)			
		4c. Habitat alteration. Score one or double	e check and average.		
		Recovered (6)	x mowing	x	shrub/sapling removal
		x Recovering (3)	grazing	~	herbaceous/aquatic bed removal
		Recent or no recovery (1)	clearcutting	х	sedimentation
	37		selective cutting	~	dredging farming (bistoric)
61	ubtotal this name		toxic pollutants	^	nutrient enrichment
50					

ORAM v. 5	.0 Field Form Quantitative Rating	0	
Site:	Wetland W-3	Rater(s): R. Warren	0

	37			
si	ubtotal first pag	Metric 5 Special We	flands	
U max 10 pts.	Subtotal	Check all that apply and score as indi	cated.	
·		Bog (10)		
		Fen (10)		
		Old growth forest (10)		
		Mature forested wetland (5)	
			(wotland, uprostricted bydrology (10)	
			(wetland -unrestricted hydrology (10)	
		Lake Elie Coastal/Indualy	(Oak Openings) (10)	
		Polict W/ot Prairies (10)		
			adaral thraatanad ar andangarad anasias	(10)
		Significant migratory cong	ederal tilleateried of endangered species	(10)
		Cotogoni 1 Watland Song	Ouestien 1 Ouelitative Dating (10)	
		Category 1 Wetland. See	Question 1 Qualitative Rating (-10)	
2	39	Metric 6. Plant comm	nunities, interspersion	, microtopography.
max 20 pts.	subtotal	6a. Wetland Vegetation Communities Score all present using 0 to 3 scale	Vegatation Communi	ty Cover Scale IAbsent or comprises <0 1ba (0 2471 acres) contiguous area
		0 Aquatic bed	0	Present and either comprises small part of wetland's vegetation and is
		1 Emergent	1	of moderate quality, or comprises a significant part but is of low quality
		0 Shrub		Present and either comprises significant part of wetland's vegetation
		0 Eorest	2	and is of moderate quality, or comprises a small part and is of high
		Mudflate		Present and comprises significant part, or more, of wetland's
		Open Water	3	vegetation and is of high quality.
		Othor		
		6b. Horizontal (plan view) Interspersio	n. Narrative Description	of Vegetation Quality
		Score only one.		Low spp diversity and/or predominance of nonnative or disturbance
		High (5)		tolerant native species
		Moderately high (4)	mod	Native spp are dominant component of the vegetation, although nonnative and/or disturbance tolerant native spp can also be present.
		Moderate (3)		and species diversity moderate to moderately high, but generally w/o
		Moderately low (2)		presence of rare, threatened, or endangered spp
		X Low (1)	high	A predominance of native species, with nonnative spp and/or disturbance tolerant native spp absent or virtually absent, and high
		None (0)		spp diversity and often, but not always, the presence of rare,
		Table 1 ORAM long form for list Add	or Mudflat and Open Wa	threatened, or endangered spp
		deduct points for coverage.	0	Absent <0.1ha (0.247 acres)
		Extensive >75% cover (-5	i) 1	Low 0.1 to <1ha (0.247 to 2.47 acres)
		X Moderate 25-75% cover (-	-3) 2	Moderate 1 to <4ha (2.47 to 9.88 acres)
		Sparse 5-25% cover (-1)	3	High 4ha (9.88 acres) or more
		Nearly absent <5% cover	(0) Microtopography Cov	ver Scale
		Absent (1)	0	Absent
		6d. Microtopography. Score all present using 0 to 3 scale.	1	Present in very small amounts or if more common of marginal quality
		1 Vegetated hummucks/tus	sucks	Present in moderate amounts, but not of highest quality or in small
		1 Coarse woody debris >15	cm (6in)	amounts of highest quality
		0 Standing dead >25cm (10	in) dbh 3	
	•	1 Amphibian breeding pools	- -	Present in moderate or greater amounts and of highest quality
39	GRANI	D TOTAL (max 100 pts	s)	

		circle	
		answer or	
		insert	Result
		score	
Narrative Rating	Question 1 Critical Habitat	YES NO	If yes, Category 3.
	Question 2. Threatened or Endangered Species	YES NO	If yes, Category 3.
	Question 3. High Quality Natural Wetland	YES NO	If yes, Category 3.
	Question 4. Significant bird habitat	YES NO	If yes, Category 3.
	Question 5. Category 1 Wetlands	YES NO	If yes, Category 1.
	Question 6. Bogs	YES NO	If yes, Category 3.
	Question 7. Fens	YES NO	If yes, Category 3.
	Question 8a. Old Growth Forest	YES NO	If yes, Category 3.
	Question 8b. Mature Forested Wetland	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.
	Question 9b. Lake Erie Wetlands - Restricted	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.
	Question 9d. Lake Erie Wetlands – Unrestricted with native plants	YES NO	If yes, Category 3
	Question 9e. Lake Erie Wetlands - Unrestricted with invasive plants	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.
	Question 10. Oak Openings	YES NO	If yes, Category 3
	Question 11. Relict Wet Prairies	YES NO	If yes, evaluate for Category 3; may also be 1 or 2.
Quantitative Rating	Metric 1. Size	0	
	Metric 2. Buffers and surrounding land use	8	
	Metric 3. Hydrology	9	
	Metric 4. Habitat	7.5	
	Metric 5. Special Wetland Communities	0	
	Metric 6. Plant communities, interspersion, microtopography	5	
	TOTAL SCORE	39	Category based on score breakpoints modified 2

Complete Wetland Categorization Worksheet.

Wetland Categorization Worksheet

Choices	Circle one		Evaluation of Categorization Result of ORAM	
Did you answer "Yes" to any of the following questions: Narrative Rating Nos. 2, 3, 4, 6, 7, 8a, 9d, 10	YES Wetland is categorized as a Category 3 wetland	NO	Is quantitative rating score <i>less</i> than the Category 2 scoring threshold (<i>excluding</i> gray zone)? If yes, reevaluate the category of the wetland using the narrative criteria in OAC Rule 3745-1-54(C) and biological and/or functional assessments to determine if the wetland has been over-categorized by the ORAM	
Did you answer "Yes" to any of the following questions: Narrative Rating Nos. 1, 8b, 9b, 9e, 11	YES Wetland should be evaluated for possible Category 3 status	NO	Evaluate the wetland using the 1) narrative criteria in OAC Rule 3745-1-54(C) and 2) the quantitative rating score. If the wetland is determined to be a Category 3 wetland using either of these, it should be categorized as a Category 3 wetland. Detailed biological and/or functional assessments may also be used to determine the wetland's category.	
Did you answer "Yes" to Narrative Rating No. 5	YES Wetland is categorized as a Category 1 wetland	NO	Is quantitative rating score <i>greater</i> than the Category 2 scoring threshold <i>(including</i> any gray zone)? If yes, reevaluate the category of the wetland using the narrative criteria in OAC Rule 3745-1-54(C) and biological and/or functional assessments to determine if the wetland has been under-categorized by the ORAM	
Does the quantitative score fall within the scoring range of a Category 1, 2, or 3 wetland?	YES Wetland is assigned to the appropriate category based on the scoring range	NO	If the score of the wetland is located within the scoring range for a particular category, the wetland should be assigned to that category. In all instances however, the narrative criteria described in OAC Rule 3745-1-54(C) can be used to clarify or change a categorization based on a quantitative score.	
Does the quantitative score fall with the <i>"gray zone"</i> for Category 1 or 2 or Category 2 or 3 wetlands?	YES Wetland is assigned to the higher of the two categories or assigned to a category based on detailed assessments and the narrative criteria		Rater has the option of assigning the wetland to the higher of the two categories or to assign a category based on the results of a nonrapid wetland assessment method, e.g. functional assessment, biological assessment, etc, and a consideration of the narrative criteria in OAC rule 3745-1- 54(C).	
Does the wetland otherwise exhibit <i>moderate OR superior</i> hydrologic OR habitat, OR recreational functions AND the wetland was <i>not</i> categorized as a Category 2 wetland (in the case of moderate functions) or a Category 3 wetland (in the case of superior functions) by this method?	YES Wetland was undercategorized by this method. A written justification for recategorization should be provided on Background Information Form	Wetland is assigned to category as determined by the ORAM.	A wetland may be undercategorized using this method, but still exhibit one or more superior functions, e.g. a wetland's biotic communities may be degraded by human activities, but the wetland may still exhibit superior hydrologic functions because of its type, landscape position, size, local or regional significance, etc. In this circumstance, the narrative criteria in OAC Rule 3745-1-54(C)(2) and (3) are controlling, and the under-categorization should be corrected. A written justification with supporting reasons or information for this determination should be provided.	

Final Category						
Choose one	Category 1	Category 2	Category 3			

End of Ohio Rapid Assessment Method for Wetlands.

Appendix E:

Ohio Natural Heritage Database Results

Ohio Department of Natural Resources

JOHN R. KASICH, GOVERNOR

JAMES ZEHRINGER, DIRECTOR

Ohio Division of Wildlife Raymond W. Petering, Chief 2045 Morse Rd., Bldg. G Columbus, OH 43229-6693 Phone: (614) 265-6300

25 May 2017

Reiss Warren EnviroScience, Inc. 5070 Stow Rd. Stow, OH 44224

Dear Mr. Warren,

After reviewing the Natural Heritage Database, I find the Division of Wildlife has no records of rare or endangered species in the Avon Commerce Parkway Property project area, including a onemile radius, in Avon, Lorain County, Ohio. We are unaware of any unique ecological sites, geologic features, animal assemblages, scenic rivers, state wildlife areas, nature preserves, parks or forests, national wildlife refuges, parks or forests or other protected natural areas within a one-mile radius of the project area.

Our inventory program has not completely surveyed Ohio and relies on information supplied by many individuals and organizations. Therefore, a lack of records for any particular area is not a statement that rare species or unique features are absent from that area. This letter only represents a review of rare species and natural features data within the Ohio Natural Heritage Database. It does not fulfill coordination under the National Environmental Policy Act (NEPA) or the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S. C. 661 et seq.) and does not supersede or replace the regulatory authority of any local, state or federal agency nor relieve the applicant of the obligation to comply with any local, state or federal laws or regulations.

Please contact me at 614-265-6818 if I can be of further assistance.

Sincerely,

Debbie Woischhe

Debbie Woischke Ohio Natural Heritage Database Program